Solutions to Midterm Exam

Exercise 1. Quiz. (18 points) Answer each yes/no question below (1 pt) and provide a short justification for your answer (2 pts).
a) Let \mathcal{F} be a σ-field on Ω and \mathcal{G}, \mathcal{H} be two sub- σ-fields of \mathcal{F}.
a1) Does it always hold that $\mathcal{G} \cap \mathcal{H}$ is a σ-field ?
Note: $\mathcal{G} \cap \mathcal{H}$ is by definition the list of subsets of Ω belonging to both \mathcal{G} and \mathcal{H}.
Answer: Yes. $\emptyset, \Omega \in \mathcal{G} \cap \mathcal{H}$; if $A \in \mathcal{G} \cap \mathcal{H}$, then $A^{c} \in \mathcal{G} \cap \mathcal{H}$ also; and if ($A_{n}, n \geq 1$) is a sequence of events such that $A_{n} \in \mathcal{G} \cap \mathcal{H}$ for every $n \geq 1$, then $\cup_{n \geq 1} A_{n} \in \mathcal{G}$ and $\cup_{n \geq 1} A_{n} \in \mathcal{H}$, so $\cup_{n \geq 1} A_{n} \in \mathcal{G} \cap \mathcal{H}$.
a2) Does it always hold that $\mathcal{G} \cup \mathcal{H}$ is a σ-field ?
Note: $\mathcal{G} \cup \mathcal{H}$ is by definition the list of subsets of Ω belonging to either \mathcal{G} or \mathcal{H}.
Answer: No. For example, if $A \in \mathcal{G}$ and $B \in \mathcal{H}$, then it is not always the case that $A \cup B \in \mathcal{G}$ or $A \cup B \in \mathcal{H}$. Example: $\Omega=\{1,2,3,4\}, \mathcal{G}=\sigma(\{1,2\}), \mathcal{H}=\sigma(\{1,3\})$; then $A=\{1,2\} \in \mathcal{G}$, $B=\{1,3\} \in \mathcal{G}$, but $A \cup B=\{1,2,3\}$ does not belong to \mathcal{G}, nor to \mathcal{H}.
b) Let X, Y, Z be three random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
b1) Does it always hold that $\sigma(X, Y, Z)=\sigma(X+Y, Y+Z, Z+X)$?
Answer: Yes, as the transformation $(x, y, z) \mapsto(x+y, y+z, z+x)$ is a one-to-one transformation (as the computation $\operatorname{det}\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)=2 \neq 0$ shows). The knowledge of (X, Y, Z) is therefore equivalent to that of $(X+Y, Y+Z, Z+X)$.
b2) If $\sigma(X+Y+Z)=\sigma(X, Y, Z)$, does that necessarily imply that X, Y, Z are independent ?
Answer: No. Here is a simple counter-example: $X=Y=Z$, and X is a non-constant random variable.
c) Let X be a continuous random variable and Y be a discrete random variable which is independent of X and also such that $Y(\omega) \neq 0$ for all $\omega \in \Omega$. Let finally $Z=X \cdot Y$.
c1) Is it always the case that Z is a continuous random variable?
Answer: Yes. Let C be the countable set of (non-zero) values of Y and let us compute

$$
\begin{aligned}
F_{Z}(t) & =\sum_{y \in C} \mathbb{P}(\{X \cdot Y \leq t\} \mid\{Y=y\}) \mathbb{P}(\{Y=y\}) \\
& =\sum_{y \in C, y>0} \mathbb{P}(\{X \leq t / y\}) \mathbb{P}(\{Y=y\})+\sum_{y \in C, y<0} \mathbb{P}(\{X \geq t / y\}) \mathbb{P}(\{Y=y\})
\end{aligned}
$$

so

$$
F_{Z}(t)=\sum_{y \in C, y>0} F_{X}(t / y) \mathbb{P}(\{Y=y\})+\sum_{y \in C, y<0}\left(1-F_{X}(t / y)\right) \mathbb{P}(\{Y=y\})
$$

which is differentiable as F_{X} is (and y never takes the value 0).
c2) Assume now that $X \sim \mathcal{N}(0,1)$ and $\mathbb{P}(\{Y=+1\})=\mathbb{P}(\{Y=+2\})=\frac{1}{2}$. Is Z a Gaussian random variable in this case?

Answer: No. Using the above formula, we obtain

$$
F_{Z}(t)=\frac{1}{2} F_{X}(t)+\frac{1}{2} F_{X}(t / 2)
$$

whose derivative is

$$
p_{Z}(t)=\frac{1}{2 \sqrt{2 \pi}}\left(\exp \left(-t^{2} / 2\right)+\frac{1}{2} \exp \left(-t^{2} / 8\right)\right)
$$

which is not a Gaussian (it is a centered random variable, but there is no value of $\sigma>0$ such that $\left.p_{Z}(t)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-t^{2} / 2 \sigma^{2}\right)\right)$,

Exercise 2. (15 points)

a) Let $\lambda>0$ and $X \sim \mathcal{E}(\lambda)$, i.e., $p_{X}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$. What is the distribution of $Y=\mu X$, where $\mu>0$?
Answer: $Y \sim \mathcal{E}(\lambda / \mu)$. The simplest way to see this is to note that since Y is a scaled version of X, it also has an exponential distribution, and that $\mathbb{E}(Y)=\mu \mathbb{E}(X)=\mu / \lambda$.
b) Let X be a discrete random variable taking values in \mathbb{N} and such that $\mathbb{P}(\{X \geq k\})=\frac{2}{k(k+1)}$ for every $k \geq 1$. Compute $\mathbb{E}(X)$.
Answer: (Side note: observe that $\mathbb{P}(\{X=0\})=0$, as $\mathbb{P}(\{X \geq 1\})=1$). Let us then compute

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{k \geq 1} \mathbb{P}(\{X \geq k\})=\sum_{k \geq 1} \frac{2}{k(k+1)}=\sum_{k \geq 1}\left(\frac{2}{k}-\frac{2}{k+1}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{2}{k}-\frac{2}{k+1}\right)=\lim _{n \rightarrow \infty} 2-\frac{2}{n+1}=2
\end{aligned}
$$

Another option is to compute:

$$
\begin{aligned}
\mathbb{E}(X) & =\sum_{k \geq 1} k \mathbb{P}(\{X=k\})=\sum_{k \geq 1} k(\mathbb{P}(\{X \geq k\})-\mathbb{P}(\{X \geq k+1\})) \\
& =\sum_{k \geq 1} k\left(\frac{2}{k(k+1)}-\frac{2}{(k+1)(k+2)}\right)=\sum_{k \geq 1} \frac{2 k}{k+1} \frac{2}{k(k+2)} \\
& =2 \sum_{k \geq 1} \frac{2}{(k+1)(k+2)}=2 \sum_{\ell \geq 2} \frac{2}{\ell(\ell+1)}=2(\mathbb{E}(X)-1)
\end{aligned}
$$

so $\mathbb{E}(X)=2$.
c) Let X be a $\mathcal{U}([0,1])$ random variable, Y be independent of X and such that $\mathbb{P}(\{Y=+1\})=$ $\mathbb{P}(\{Y=-1\})=\frac{1}{2}$ and $Z=X \cdot Y$. Compute $\phi_{Z}(t) \in \mathbb{R}$ for $t \in \mathbb{R}$.

Answer: Let us compute

$$
\begin{aligned}
\phi_{Z}(t) & =\mathbb{E}(\exp (i t X Y))=\frac{1}{2} \mathbb{E}(\exp (i t X))+\frac{1}{2} \mathbb{E}(\exp (-i t X)) \\
& =\frac{1}{2} \frac{e^{i t}-1}{i t}+\frac{1}{2} \frac{e^{-i t}-1}{-i t}=\frac{e^{i t}-e^{-i t}}{2 i t}=\frac{\sin (t)}{t}
\end{aligned}
$$

Another way to obtain this result is to observe that $Z \sim \mathcal{U}([-1,+1])$ and to compute directly the characteristic function.
d) Let X_{1}, X_{2} be two square-integrable random variables such that $\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}-X_{2}\right)$. Compute $\operatorname{Cov}\left(X_{1}, X_{2}\right)$.
Answer: Let us expand the variance on both sides:

$$
\begin{aligned}
& \operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Var}\left(X_{2}\right) \\
& \operatorname{Var}\left(X_{1}-X_{2}\right)=\operatorname{Var}\left(X_{1}\right)-2 \operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Var}\left(X_{2}\right)
\end{aligned}
$$

If the 2 variances are equal, then $2 \operatorname{Cov}\left(X_{1}, X_{2}\right)=-2 \operatorname{Cov}\left(X_{1}, X_{2}\right)$, meaning that $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.
e) Does there exist a non-negative random variable X such that $\mathbb{E}(X)=10$ and $\mathbb{E}\left(2^{X}\right)=1000$? Justify your answer.
Answer: No. By Jensen's inequality, it should hold that $2^{\mathbb{E}(X)} \leq \mathbb{E}\left(2^{X}\right)$, but $1024 \not \leq 1000$.

Exercise 3. (13 points)

Let $n \geq 1$ and X_{1}, \ldots, X_{n} be i.i.d. random variables with common $\operatorname{cdf} F(t)=\exp (-\exp (-t))$ for $t \in \mathbb{R}$.
a) Verify that F is indeed a cdf.

Answer: $F^{\prime}(t)=\exp (-\exp (-t)) \exp (-t)>0$ for all $t \in \mathbb{R}$, so F is increasing; $\lim _{t \rightarrow+\infty} F(t)=$ $\exp (-0)=1, \lim _{t \rightarrow-\infty} F(t)=\exp (-\infty)=0$; and F is continuous.
b) Compute both the cdf and the pdf of

$$
Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}-\ln (n)
$$

Answer: Let us compute

$$
\begin{aligned}
F_{Y_{n}}(t) & =\mathbb{P}\left(\left\{\max \left\{X_{1}, \ldots, X_{n}\right\} \leq t+\ln (n)\right\}\right)=\mathbb{P}\left(\left\{X_{1} \leq t+\ln (n)\right\}\right)^{n} \\
& =\exp (-\exp (-t-\ln (n)))^{n}=\exp (-n \exp (-t) / n)=F(t)
\end{aligned}
$$

So for every $n \geq 1, Y_{n}$ has the same cdf as X_{1}, and its pdf is given by

$$
p_{Y_{n}}(t)=\exp (-\exp (-t)) \exp (-t)
$$

c) Compute both the cdf and the pdf of

$$
Z_{n}=\min \left\{\exp \left(-X_{1}\right), \ldots, \exp \left(-X_{n}\right)\right\}
$$

Answer: Two possibilities here: either compute directly

$$
\mathbb{P}\left(\left\{Z_{n} \geq t\right\}\right)=\mathbb{P}\left(\left\{\exp \left(-X_{1}\right) \geq t\right\}\right)^{n}=\mathbb{P}\left(\left\{X_{1} \leq-\ln (t)\right\}\right)^{n}=\exp (-n \exp (\ln (t)))=\exp (-n t)
$$

so that $F_{Z_{n}}(t)=1-\exp (-n t)$ and $p_{Z_{N}}(t)=n \exp (-n t)$ [in other words, $Z_{n} \sim \mathcal{E}(n)$].
Or observe that

$$
Z_{n}=\exp \left(-\max \left\{X_{1}, \ldots, X_{n}\right\}\right)=\exp \left(-Y_{n}-\ln (n)\right)=\frac{\exp \left(-Y_{n}\right)}{n}
$$

which by part b) has the same distribution as $\frac{\exp \left(-X_{1}\right)}{n}$. Then

$$
\mathbb{P}\left(\left\{Z_{n} \leq t\right\}\right)=\mathbb{P}\left(\left\{\exp \left(-X_{1}\right) \leq n t\right\}\right)=\mathbb{P}\left(\left\{X_{1} \geq-\ln (n t)\right\}\right)=1-\exp (-n t)
$$

reaching the same conclusion.

Exercise 4. (14 points)

Let $\alpha>0$ and $\left(X_{n}, n \geq 1\right)$ be a sequence of independent random variables such that

$$
\mathbb{P}\left(\left\{X_{n}=+n^{\alpha}\right\}\right)=\mathbb{P}\left(\left\{X_{n}=-n^{\alpha}\right\}\right)=\frac{1}{2 n} \quad \text { and } \quad \mathbb{P}\left(\left\{X_{n}=0\right\}\right)=1-\frac{1}{n} \quad \text { for } n \geq 1
$$

Let also $S_{n}=X_{1}+\ldots+X_{n}$ for $n \geq 1$.
a) Compute $\mathbb{E}\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$, then estimate both quantities as a function of n using the approximation (valid for a generic value of $\gamma \in \mathbb{R}$):

$$
\sum_{j=1}^{n} j^{\gamma} \simeq \int_{1}^{n} d x x^{\gamma}
$$

(as an example, such an approximation allows to estimate $\sum_{j=1}^{n} j \simeq \int_{1}^{n} d x x \simeq \frac{n^{2}}{2}$.)
Answer: $\mathbb{E}\left(S_{n}\right)=\sum_{j=1}^{n} \mathbb{E}\left(X_{j}\right)=0$ and as the X_{j} are independent,

$$
\operatorname{Var}\left(S_{n}\right)=\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right)=\sum_{j=1}^{n} \mathbb{E}\left(X_{j}^{2}\right)=\sum_{j=1}^{n} j^{2 \alpha-1}
$$

Using the hint, the variance behaves as n gets large as

$$
\operatorname{Var}\left(S_{n}\right) \simeq \int_{1}^{n} d x x^{2 \alpha-1} \simeq \frac{n^{2 \alpha}}{2 \alpha}
$$

b) For what values of $\beta>0$ can you show that $\frac{S_{n}}{n^{\beta}} \underset{n \rightarrow \infty}{\stackrel{\mathbb{P}}{\rightarrow}} 0$?

Answer: By Chebyshev's inequality, for every $\varepsilon>0$,

$$
\mathbb{P}\left(\left\{\left|\frac{S_{n}}{n^{\beta}}\right| \geq \varepsilon\right\}\right)=\mathbb{P}\left(\left\{\left|S_{n}\right| \geq n^{\beta} \varepsilon\right\}\right) \leq \frac{\mathbb{E}\left(S_{n}^{2}\right)}{n^{2 \beta} \varepsilon^{2}}=\frac{\operatorname{Var}\left(S_{n}\right)}{n^{2 \beta} \varepsilon^{2}} \simeq \frac{n^{2(\alpha-\beta)}}{2 \alpha \varepsilon^{2}}
$$

which tends to 0 as $n \rightarrow \infty$ as soon as $\beta>\alpha$.
c) For what values of $\beta>0$ can you show that $\frac{S_{n}}{n^{\beta}} \underset{n \rightarrow \infty}{\rightarrow} 0$ almost surely ?

Answer: In order to show almost sure convergence via the Borel-Cantelli lemma, we need to show that

$$
\sum_{n \geq 1} \mathbb{P}\left(\left\{\left|\frac{S_{n}}{n^{\beta}}\right| \geq \varepsilon\right\}\right)<+\infty
$$

As

$$
\sum_{n \geq 1} \mathbb{P}\left(\left\{\left|\frac{S_{n}}{n^{\beta}}\right| \geq \varepsilon\right\}\right) \widetilde{\leq} \sum_{n \geq 1} \frac{n^{2(\alpha-\beta)}}{2 \alpha \varepsilon^{2}}
$$

the sum is finite if $2(\alpha-\beta)<-1$, i.e., $\beta>\alpha+\frac{1}{2}$.

