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Problem 1 (Even Moments of Subgaussian RV). [10pts]

(i) [5pts] Let Z be a non-negative random variable. Show that

E[Z] =

∫ ∞

0

Prob(Z > z)dz. (1)

Solution: Note that the expectation is either finite or it diverges to infinity. Let us

first assume that E[Z] <∞. There are various ways to develop the proof for this case.

Here are three:

• Observe that z =
∫∞
0
1{t≤z}dt, where 1{t≤z} is the indicator function of the condi-

tion {t ≤ z}. Then

E[Z] =

∫ ∞

0

zf(z)dz

=

∫ ∞

0

∫ ∞

0

1{t≤z}dtf(z)dz

=

∫ ∞

0

∫ ∞

0

1{t≤z}f(z)dz︸ ︷︷ ︸
=Prob(Z>t)

dt. (Because the expectation is finite)

• Let f(z) be the density of the random variable and F (z) =
∫ z

0
f(x)dx be its

cumulative distribution function. Then, using integration by parts,

E[Z] =

∫ ∞

0

zf(z)dz

= z(F (z)− 1)|∞0 −
∫ ∞

0

(F (z)− 1)dz

Note that,z(F (z)− 1) = z
∫∞
z
f(t)dt ≤

∫∞
z
tf(t)dt→ 0 as z → ∞, therefore

=

∫ ∞

0

(1− F (z))dz

=

∫ ∞

0

Prob(Z > z)dz.

• Let f(z) be the density of the random variable. Letting G(z) = Prob(Z > z),

note that G′(z) = −f(z). Then, using integration by parts,∫ ∞

0

1 · Prob(Z > z)dz = [zProb(Z > z)]∞0︸ ︷︷ ︸
=0

−
∫ ∞

0

z(−f(z))dz

= E[Z].
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For the case where E[Z] = ∞ (you were not expected to do this part!) here is the proof

that the integral,
∫∞
0

Prob(Z > z)dz also diverges to ∞. Let ZK = K1X>K +X1X≤K ,

where K ∈ R+. Then, since ZK is bounded it’s mean is finite. Therefore, we can use

the previous result to say,

E[ZK ] =

∫ ∞

0

Prob(ZK > z)dz (2)

=

∫ K

0

Prob(ZK > z)dz (ZK is bounded between 0 and K)

=

∫ K

0

Prob(Z > z)dz (for z ∈ [0, K), ZK > z iff Z > z)

By definition,∫ ∞

0

Prob(Z > z)dz = lim
K→∞

∫ K

0

Prob(Z > z)dz (3)

= lim
K→∞

E[ZK ] (4)

= E[Z] (Monotone Convergence Theorem)

(ii) [5pts] Let X be a σ2-subgaussian random variable. Show that for even integers k = 2m,

E[Xk] ≤ C(k)σk, (5)

and find the expression for C(k). (HINT: Use the formulation of the mean above.

HINT:
∫∞
0
x2m−1e−x2/2dx = 2m−1(m− 1)!)

Solution: When X is a σ2-subgaussian random variable, we derived together in class

that for any η > 0,

Prob(X > η) ≤ e−
η2

2σ2 , Prob(X < −η) ≤ e−
η2

2σ2 . (6)

We were assuming that you’d have this formula on your cheat sheets.

Now, to continue, using the result from the first part of this problem,

E[Xk] =

∫ ∞

0

Prob(Xk > α)dα (7)

=

∫ ∞

0

Prob(X > α1/k)dα +

∫ ∞

0

Prob(X < −α1/k)dα (8)

Therefore,

E[Xk] ≤ 2

∫ ∞

0

e−
α2/k

2σ2 dα. (9)

Setting ukσk = α we obtain

E[Xk] ≤ 2

∫ ∞

0

e−
α2/k

2σ2 dα = 2σkk

∫ ∞

0

uk−1e−u2/2du = σkk2k/2(k/2− 1)! (10)
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Remark: We gave you as a hint the formula for the moments of the “half-Gaussian”

(not normalized). But note that it is not difficult to solve this problem just with

elementary integral operations. Specifically, setting u = α
2
k /(2σ2), we obtain∫ ∞

0

e−
α2/k

2σ2 dα = (2σ2)k/2k

∫ ∞

0

e−uum−1du, (11)

and the last integral can be easily solved recursively via integration by parts:∫ ∞

0

e−u︸︷︷︸
f ′

um−1︸ ︷︷ ︸
g

du =
[
−e−uum−1

]∞
0
−
∫ ∞

0

(
−e−u

) (
(m− 1)um−2

)
du (12)

= (m− 1)

∫ ∞

0

e−uum−2du, (13)

and hence, by recursion,∫ ∞

0

e−uum−1du = (m− 1) · (m− 2) · . . . · 2 · 1, (14)

which thus gives the same formula.
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Problem 2 (Generating fair coin flips from rolling the dice). [10pts] Suppose X1, X2, . . .

are the outcomes of rolling a possibly loaded die multiple times. The outcomes are assumed

to be iid. Let P(Xi = m) = pm, for m = 1, 2, . . . , 6, with pm unknown (but non-negative and

summing to one, clearly). By processing this sequence we would like to obtain a sequence

Z1, Z2, . . . of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, (X1X2),

(X3X4), (X5X6), mapping (3, 4) to 0, (4, 3) to 1, and all the other outcomes to the empty

string λ. After processing X1, X2, we will obtain either nothing, or a bit Z1.

(a) [3pts] Show that, if a bit is obtained, it is fair, i.e., P(Z1 = 0|Z1 ̸= λ) = P(Z1 = 1|Z1 ̸=
λ) = 1/2.

Solution: (a) P (Z1 = 0|Z1 ̸= λ) = P (Z1 = 0, Z1 ̸= λ)/P (Z1 ̸= λ) = P (Z1 =

0)/P (Z1 ̸= λ). Similarly, P (Z1 = 1|Z1 ̸= λ) = P (Z1 = 1)/P (Z1 ̸= λ). Let us now

show that P (Z1 = 0) = P (Z1 = 1) and this will complete the proof. Note that P (Z1 =

1) = P (X1 = 3, X2 = 4) = P (X1 = 3)P (X2 = 4) = p3p4 and P (Z1 = 0) = P (X1 =

4, X2 = 3) = P (X1 = 4)P (X2 = 3) = p4p3. Therefore P (Z1 = 1) = P (Z1 = 0).

In general we can process the X sequence in successive n-tuples via a function f :

{1, 2, 3, 4, 5, 6}n → {0, 1}∗ where {0, 1}∗ denotes the set of all finite length binary

sequences (including the empty string λ). [The case in (a) is the function where

f(3, 4) = 0, f(4, 3) = 1, and f(j,m) = λ for all other choices of j and m.] The

function f is chosen such that (Z1, . . . , ZK) = f(X1, . . . , Xn) are i.i.d., and fair (here

K may depend on (X1, . . . , Xn)).

(b) [3pts] Letting H(X) denote the entropy of the (unknown) distribution (p1, p2, . . . , p6),

prove the following chain of (in)equalities.

nH(X) = H(X1, . . . , Xn)

≥ H(Z1, . . . , ZK , K)

= H(K) +H(Z1 . . . , ZK |K)

= H(K) + E[K]

≥ E[K].

Consequently, on the average no more than nH(X) fair bits can be obtained from

(X1, . . . , Xn).

Solution:
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(b)

nH(X) = nH(Xi) (15)

= H(X1, . . . , Xn) [Independence of Xi] (16)

≥ H(f(X1, . . . , Xn)) [Data Processing Inequality] (17)

= H(Z1, . . . , ZK , K) (18)

= H(K) +H(Z1, . . . , ZK |K) [Chain Rule] (19)

= H(K) +
∑
k

p(K = k)H(Z1, . . . , ZK |K = k) (20)

= H(K) +
∑
k

p(K = k)k [Z1, . . . , Zk are i.i.d and fair when K = k](21)

= H(K) + E[K] (22)

≥ E[K] [Non-negativity of entropy] (23)

(c) [4pts] Describe how you would find a good f (with high E[K]) for n = 4 which would

work for any distribution (p1, p2, ..., p6).

Solution: (c)

We have in total 64 many possible outcomes. We can only produce fair bits, re-

gardless of the distribution, if we have permutations of the same sequence. e.g.,

1555 → 00, 5155 → 01, 5515 → 10, 5551 → 11. Let us do the counting. A sequence

can have 1, 2, 3 or 4 kinds of different symbols. An example to a sequence of 3 different

symbols is 1232.

1: We cannot produce bits with 1 kind of different symbols because you cannot permute

the sequence and get another sequence. Therefore we map sequences of kind aaaa to

the null string λ.

2: For 2 different symbols it will be either 3 of the same kind and 1 of another kind

which gives 4 different permutations or 2 of the same kind and 2 of another kind, which

gives 6 different permutations. From the 4 different permutations of a ”3 by 1” (aaab)

sequence we can generate 2 fair bits, because there are 4 permutations. From the the

first 4 of the 6 different permutations of a ”2 by 2” sequence (aabb) we can generate 2

fair bits, and from the remaining 2 permutations we can generate 1 fair bit.

3: For 3 different symbols it has to be 2 of the same symbol, 1 of another symbol

and 1 of another symbol (aabc). There are 4!/2! = 12 different ways to permute these

sequence of type aabc. From the first 8 we can generate 3 bits, and from the remaining

4 we can generate 2 bits.

4: There are 4! = 24 ways to permute a sequence of kind (a, b, c, d). From the first 16

we can generate 4 bits, and from the remaining 8 we can generate 3 bits.
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Problem 3 (Haar Wavelet). [10pts] Consider the following function f(t).

1
4

1
2

3
4

1

1

0

−1

t

f(t)

Let ψ(t) be the Haar wavelet. (1 for t ∈ [0, 1/2] and −1 for t ∈ [1/2, 1]).

As in the class we define ψm,n(t) = 2−m/2ψ(2−mt− n), for m,n ∈ Z.

(i) [5pts] Note that f(t) =
∑

m,n am,nψm,n(t). Find the scales m ∈ Z such that ∀n, am,n =

0.

Solution:

Note that am,n = ⟨ψm,n, f⟩ ≜
∫∞
−∞ ψm,n(t)f(t)dt, because ψm,n’s are orthonormal.

We will consider several cases:

• For all m ≥ 1 and n ∈ Z, am,n = 0, because the function is supported only on

[0, 1] and integrates to 0.

• For m = 0, a0,0 ̸= 0 because the inner product ⟨ψm,n, f⟩ gives 1/2.

• For m = −1, the support of ψm,n and the support of f are not disjoint only on

n ∈ {0, 1}. For each of these values of n, we can see that am,n = 0. Hence, we

can claim that for all value of n, a−1,n = 0.

• For m ≤ −2, am,0 is not 0.

Therefore we see that for m ∈ {1, 2, ...} ∪ {−1}, ∀n ∈ Z, am,n = 0.

(ii) [5pts] Let fm∗(t) be the projection of f(t) to the space spanned by {ψm,n : m,n ∈
Z, m ≥ m∗} w.r.t. the standard L2 norm. Find

max
t∈R

|fm∗(t)− f(t)|

as a function of m∗ ∈ Z.

[Hint : Try m∗ equals to 0 and sketch f0(t).]

Solution:

Here we will use the fact that fm∗ =
∑

m≥m∗
∑

n∈Z am,nψm,n. Note that for m∗ ≥ 1,
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f ∗
m(t) = 0 everywhere. This is due to the fact that for m ≥ 1, am,n = 0 for all n as we

have shown on (i).

Now consider m∗ = 0, f0(t) =
∑

m≥0

∑
n am,nψm,n(t) = a0,0ψ0,0(t) = 1/2 ψ(t). There-

fore the absolute error is at most 1/2 (i.e., at t ∈ {0, 1/4, 3/4, 1}

Note that for m = −1, for all n, am,n = 0, so f−1 = f0.

To get f−2, we look at the error of f−1 and project it to the space spanned by {ψ−2,n :

n ∈ Z}. One finds that the error e−1(t) = f−1(t)− f(t) is of the form,

e−1(t) =



−1/2 + 4t t ∈ [0, 1/4)

1/2− 4(t− 1/4) t ∈ [1/4, 1/2)

1/2− 4(t− 1/2) t ∈ [1/2, 3/4)

−1/2 + 4(t− 3/4) t ∈ [3/4, 1/4)

0 otherwise

Let us focus our attention on the segments on [0, 1/4). This segment coincides with

the support of ψ−2,0 and we have a−2,0 = 1/8. Since ψ−2,0 has height 2. The height of

a−2,0ψ−2,0 is 1/4. This results in the maximum absolute error of 1/4. Similar arguments

also works for the other segments.

But more remarkably, for t ∈ [0, 1/4), the error e−2(t) = f−2(t) − f(t) is of the form

−1/4 + 8t, t ∈ [0, 1/8) and 1/4 − 8(t − 1/8), t ∈ [1/8, 1/4). Hence we can use the

same argument to deduce that a−3.0 = 1/(16
√
2), therefore the height of am,nψ−3,0 is

1/(16
√
2) × 2

√
2 = 1/8. and the maximum absolute error is 1/8. This pattern holds

for all m∗ ≤ −4.

Hence we have the error is given by

max
t∈R

|f ∗
m(t)− f(t)| =


1 m∗ ∈ {1, 2, ...}
1/2 m∗ = 0

1/2 m∗ = −1

2m
∗

m∗ ≤ −2.
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Problem 4 (UCB With Geometric Intervals). [10pts] Consider the following slight variant

of the UCB algorithm. We have K arms. As in the lecture notes, assume that each of these

K arms corresponds to a random variable which is 1-subgaussian. For the first K steps we

sample each of these arms once. After these K first steps we have an interval of length 1,

then an interval of length 2, then one of length 4, and so on. At the beginning of each such

interval we choose the arm in the same manner as the UCB algorithm. More precisely, if t

marks the beginning of a new interval then

At = argmaxkµ̂k(t− 1) +

√
2 ln f(t)

Tk(t− 1)
,

where f(g) = 1 + t ln2(t) as for the case we discussed in the course and where Tk(t − 1)

denotes the number of times we have chosen arm k in the last t − 1 steps. But unlike the

standard UCB algorithm, for all other steps in this interval we keep the same arm. Why

might we be interested in such an algorithm? One motivation is complexity. Computing

which arm is best takes some effort. In this way we only have to compute the best arm a

logarithmic (in the time horizon) number of times.

Recall that in the analysis of the original algorithm the key to the analysis was to find a

good upper bound on Tk(n) for k > 1, assuming that arm 1 is the optimum arm. In turn,

we upper bounded the probability that we choose arm k at a particular point in time t by

the probability that arm 1 had an empirical mean at least an ϵ below its true mean µ1 and

that the empirical mean of arm k was above µ1 − ϵ. In formulae we had

Tk(n) =
n∑

t=1

1{At=k} ≤
n∑

t=1

1
{µ̂1(t−1)+

√
2 ln f(t)
T1(t−1)

≤µ1−ϵ}
+

n∑
t=1

1
{µ̂k(t−1)+

√
2 ln f(t)
Tk(t−1)

≥µ1−ϵ ∧ At=k}
(24)

Let us proceed in the same fashion. Let n = K + 2L − 1. In words, we are at the end of the

L-th interval, where L ∈ N.

(i) [5pts] What is the expression equivalent to (??) for our case?

Solution: Let t(l) = K + 2l−1. This is the time at the beginning of the l-th interval.

In the sequel, to lighten the notation, we will sometimes just write t. Then we have

Tk(n) =
L∑
l=1

1{At(l)=k}2
l−1 ≤

L∑
l=1

2l−11
{µ̂1(t(l)−1)+

√
2 ln f(t(l))
T1(t(l)−1)

≤µ1−ϵ}
+

L∑
l=1

2l−11
{µ̂k(t(l)−1)+

√
2 ln f(t(l))
Tk(t(l)−1)

≥µ1−ϵ ∧ At(l)=k}

(25)

(ii) [5pts] Look at the first of the two terms on the right of (??) in your equivalent expres-

sion. Derive a suitable upper bound for this first term. If you do not have time for the

whole derivation just write down the first few steps. These are the most crucial ones.
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Solution:

For the first term the derivation is almost the same as what we saw in the course. to

ease the notation burden, we will write t(l) as t in the following (in)equalities. We

have

E[
L∑
l=1

2l−11
{µ̂1(t−1)+

√
2 ln f(t)
T1(t−1)

≤µ1−ϵ}
] =

L∑
l=1

2l−1P

(
µ̂1(t− 1) +

√
2 ln f(t)

T1(t− 1)
≤ µ1 − ϵ

)

≤
L∑
l=1

2l−1

t∑
s=1

P

(
µ̂1,s +

√
2 ln f(t)

s
≤ µ1 − ϵ

)
(condition over T1 and use average is less than the sum)

≤
L∑
l=1

2l−1

t∑
s=1

e−
s
2
(
√

2 ln f(t)
s

+ϵ)2

=
L∑
l=1

2l−1

t∑
s=1

e− ln(f(t))−
√

2s ln f(t)− s
2
ϵ2

≤
L∑
l=1

2l−1 1

f(t)

t∑
s=1

e−
s
2
ϵ2

=
L∑
l=1

2l−1 1

f(t)

e−
ϵ2

2

1− e−
ϵ2

2

=
L∑
l=1

2l−1 1

f(t)

1

e
ϵ2

2 − 1︸ ︷︷ ︸
take Taylor series

all terms are positive; keep only first two

≤
L∑
l=1

1

f(t)
2l−1 2

ϵ2

≤ 2

ϵ2

L∑
l=1

2l−1 1

1 + t ln(t)2

≤ 2

ϵ2
(1 +

L∑
l=2

1

(l − 1)2
) (t ln(t)2 ≥ 2l−1(l − 1)2)

≤ 2

ϵ2
(2 +

∫ L−1

1

1

x2
)dx)

(upper bound discrete sum with integral)

≤ 6

ϵ2
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