Homework 8

Exercise 1*. a) Let $\left(X_{n}, n \geq 1\right)$ be a sequence of bounded i.i.d. random variables such that $\mathbb{E}\left(X_{1}\right)=0$ and $\operatorname{Var}\left(X_{1}\right)=1$, and let $S_{n}=X_{1}+\ldots+X_{n}$ for $n \geq 1$. Show that the event

$$
A=\left\{\frac{S_{n}}{n} \text { converges }\right\}
$$

belongs to the tail σ-field $\mathcal{T}=\cap_{n \geq 1} \sigma\left(X_{n}, X_{n+1}, \ldots\right)$ (implying that $\mathbb{P}(A) \in\{0,1\}$ by Kolomgorov's $0-1$ law; but the law of large numbers tells you more in this case, namely that $\mathbb{P}(A)=1$.).
b) Assume now that ($X_{n}, n \geq 1$) is a sequence of bounded, uncorrelated and identically distributed random variables such that $\mathbb{E}\left(X_{1}\right)=0$ and $\operatorname{Var}\left(X_{1}\right)=1$. The answer to Exercise 3.b) in homework 6 tells you what happens to $\mathbb{P}(A)$ in this case.

That said, under this more general assumption, Kolmogorov's 0-1 law may not necessarily hold. Prove it by exhibiting a sequence of random variables $\left(X_{n}, n \geq 1\right)$ satisfying these assumptions and an event $B \in \mathcal{T}$ such that $0<\mathbb{P}(B)<1$.

Exercise 2. Someone proposes you to play the following game: start with an initial amount of $S_{0}>0$ francs, of your choice. Then toss a coin: if it falls on heads, you win $S_{0} / 2$ francs; while if it falls on tails, you lose $S_{0} / 2$ francs. Call S_{1} your amount after this first coin toss. Then the game goes on, so that your amount after coin toss number $n \geq 1$ is given by

$$
S_{n}= \begin{cases}S_{n-1}+\frac{S_{n-1}}{2} & \text { if coin number } n \text { falls on heads } \\ S_{n-1}-\frac{S_{n-1}}{2} & \text { if coin number } n \text { falls on tails }\end{cases}
$$

We assume moreover that the coin tosses are independent and fair, i.e., with probability $1 / 2$ to fall on each side. Nevertheless, you should not agree to play such a game: explain why!

Hints:

First, to ease the notation, define $X_{n}=+1$ if coin n falls on heads and $X_{n}=-1$ if coin n falls on tails. That way, the above recursive relation may be rewritten as $S_{n}=S_{n-1}\left(1+\frac{X_{n}}{2}\right)$ for $n \geq 1$.
a) Compute recursively $\mathbb{E}\left(S_{n}\right)$; if it were only for expectation, you could still consider playing such a game, but...
b) Define now $Y_{n}=\log \left(S_{n} / S_{0}\right)$, and use the central limit theorem to approximate $\mathbb{P}\left(\left\{Y_{n}>t\right\}\right)$ for a fixed value of $t \in \mathbb{R}$ and a relatively large value of n. Argue from there why it is definitely not a good idea to play such a game! (computing for example an approximate value of $\left.\mathbb{P}\left(\left\{S_{100}>S_{0} / 10\right\}\right)\right)$

Exercise 3. Let $\lambda>0$ be fixed. For a given $n \geq\lceil\lambda\rceil$, let $X_{1}^{(n)}, \ldots, X_{n}^{(n)}$ be i.i.d. Bernoulli (λ / n) random variables and let $S_{n}=X_{1}^{(n)}+\ldots+X_{n}^{(n)}$.
a) Compute $\mathbb{E}\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$ for a fixed value of $n \geq\lceil\lambda\rceil$.
b) Deduce the value of $\mu=\lim _{n \rightarrow \infty} \mathbb{E}\left(S_{n}\right)$ and $\sigma^{2}=\lim _{n \rightarrow \infty} \operatorname{Var}\left(S_{n}\right)$.
c) Compute the limiting distribution of S_{n} (as $n \rightarrow \infty$).

Hint: Use characteristic functions. You might also have a look at tables of characteristic functions of some well known distributions in order to solve this exercise.

For a given $n \geq 1$, let now $Y_{1}^{(n)}, \ldots, Y_{n}^{(n)}$ be i.i.d. Bernoulli $(1 / n)$ random variables and let

$$
T_{n}=Y_{1}^{(n)}+\ldots+Y_{\lceil\lambda n\rceil}^{(n)}
$$

where $\lambda>0$ is the same as above.
d) Compute the limiting distribution of T_{n} (as $n \rightarrow \infty$).
e) Is it also the case that either S_{n} or T_{n} converge almost surely or in probability towards a limit? Justify your answer!

