Algèbre linéaire avancée II printemps 2024

Série 3

L'exercice marqué d'un (+) sert d'introduction à la série, tandis que celui marqué d'une (*) est plus difficile. Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Moodle 2 semaines après. Les solutions des exercices (*) et (+) seront discutées dans les séances d'exercices du mardi d'après et d'avant respectivement. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit V un espace vectoriel réel et soit $B = \{v_1, \ldots, v_4\}$ une base de V.

1. (+) Soit f l'endomorphisme défini par

$$f(v_1) = v_1 - v_2, f(v_2) = 2v_2 - 6v_3, f(v_3) = -2v_1 + 2v_2, f(v_4) = v_2 - 3v_3 + v_4.$$

Écrivez la matrice A_B de l'application f dans la base $B = \{v_1, \ldots, v_4\}$. Est-ce que f est inversible? Si oui, écrivez la matrice A_B^{-1} de l'application inverse $f^{-1}: V \longrightarrow V$.

2. Maintenant, soit g un autre endomorphisme défini par

$$g(v_1) = v_1 + 2v_2, g(v_2) = v_3 + v_4, g(v_3) = v_1 + v_2 + v_3, g(v_4) = 3v_2 - 2v_3.$$

Écrivez la matrice C_B de l'application g dans la base $B = \{v_1, \ldots, v_4\}$. Est-ce que g est inversible? Si oui, écrivez la matrice C_B^{-1} de l'application inverse $g^{-1}: V \longrightarrow V$.

3. Maintenant, soit $B' = \{w_1, \dots, w_4\}$ une autre base de V telle que

$$v_1 = w_1 + w_2, v_2 = w_3 + w_4, v_3 = w_1 + w_2 + w_3, v_4 = w_2 + w_4.$$

Écrivez la matrice $P_{BB'}$ de changement de base, c'est-à-dire $[v]_{B'} = P_{BB'}[v]_B$. Écrivez la matrice $A_{B'}$ de l'application f dans la base B', et la matrice $C_{B'}$ de l'application g dans la base B'.

Rappel:

$$egin{array}{ccc} V & \stackrel{f}{\longrightarrow} & V \ & \downarrow^{\phi_B} & & \downarrow^{\phi_B} \ & K^n & \stackrel{A}{\longrightarrow} & K^n \end{array}$$

Exercice 2. Sachant que
$$\det \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) = 5$$
 , calculer $\det \left(\begin{array}{ccc} 2a & 2b & 2c \\ g & h & i \\ 4d + 3g & 4e + 3h & 4f + 3i \end{array} \right)$.

Exercice 3. Factoriser $f(x) \in K[x]$ en polynômes irréductibles.

a)
$$f(x) = 3x^4 + 2$$
, $K = \mathbb{Z}_5$.

d)
$$f(x) = x^3 + 2x^2 + 2x + 1$$
, $K = \mathbb{Z}_3$.

b)
$$f(x) = 3x^4 + 2$$
, $K = \mathbb{Z}_{11}$.

e)
$$f(x) = x^4 - x^2 + x - 1$$
, $K = \mathbb{Z}_{13}$.

c)
$$f(x) = x^3 + 2x^2 + 2x + 1$$
, $K = \mathbb{Z}_7$.

c)
$$f(x) = x^3 + 2x^2 + 2x + 1$$
, $K = \mathbb{Z}_7$. f) $f(x) = x^4 - x^2 + x - 1$, $K = \mathbb{Z}_{17}$.

Exercice 4. Calculer gcd(f,g) et $p,q \in K[x]$ tel que $gcd(f,g) = p \cdot f + q \cdot g$:

1.
$$f(x) = x^2 + 2$$
, $g(x) = x^3 + 4x^2 + x + 1$, $K = \mathbb{Z}_5$

2.
$$f(x) = x^2 + 1$$
, $g(x) = x^5 + x^4 + x^3 + x^2 + x + 1$, $K = \mathbb{Z}_2$

3.
$$f(x) = x^2 - x - 2$$
, $g(x) = x^5 - 4x^3 - 2x^2 + 7x - 6$, $K = \mathbb{Q}$.

Exercice 5. Soient E, F deux corps tels que $F \subseteq E$.

- i) Montrer que E est un espace vectoriel sur F avec multiplication externe $e \cdot f$, $e \in E$, $f \in F$ étant la multiplication sur E en vérifiant l'associativité, la distributivité et la neutralité de $1_E = 1_F$.
- ii) Maintenant, soit E vu comme espace vectoriel sur F de dimension finie et soit $e \in E \setminus \{0\}$. Montrer qu'il existe un polynôme $f(x) \in F[x] \setminus \{0\}$ tel que f(e) = 0.
- iii) Montrer qu'il y a un seul tel polynome $p_e(x) \neq 0$ de degré minimal et de coefficient dominant égal à 1.
- iv) Montrer que ce polynôme $p_e(x)$ est irréductible.

Exercice 6. Soit K un corps. On écrit $\frac{\partial}{\partial x}:K[x]\to K[x]$ pour l'application K-linéaire tel que $\frac{\partial}{\partial x}x^n=nx^{n-1}$ pour chaque $n\geq 0$ (où n est regardé en tant qu'élément de K à travers l'homomorphisme canonique $\mathbb{Z} \to K$).

Soient $f,g\in K[x]$, montrer que $\frac{\hat{\partial}}{\partial x}(f\cdot g)=f\cdot \frac{\partial}{\partial x}(g)+\frac{\partial}{\partial x}(f)\cdot g$.

Soient $h \in K[x]$ et $\alpha \in K$. Montrer que α est racine multiple de h si et seulement si $h(\alpha)=0$ et $\frac{\partial}{\partial x}(h)(\alpha)=0$.

Exercice 7. Le but de cet exercice est la construction du corps des nombres rationnels \mathbb{Q} à partir de l'anneau des nombres entiers \mathbb{Z} .

- 1. On définit sur l'ensemble $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ la relation: $(a,b) \sim (a',b')$ si et seulement si ab' = a'b. Montrer qu'il s'agit d'une relation d'équivalence.
- 2. Maintenant, on désigne $\frac{a}{b}$ la classe (a,b) et on définit \mathbb{Q} comme l'ensemble des classes d'équivalence de $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ par \sim .

Soient $a, a' \in \mathbb{Z}$ et $b, b' \in \mathbb{Z} \setminus \{0\}$ alors on munit \mathbb{Q} des opérations suivantes:

i) somme: $\frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'}$,

ii) produit: $\frac{a}{b} \cdot \frac{a'}{b'} = \frac{aa'}{bb'}$.

Montrer que ces opérations sont bien définies.

3. Montrer que $\mathbb Q$ est un corps qui contient $\mathbb Z$ sous la forme d'un sous-anneau via l'homomorphisme d'inclusion

$$\iota: \mathbb{Z} o \mathbb{Q}: n \mapsto \iota(n) = rac{n}{1}.$$

En particulier montrer que $\frac{0}{1}$ et $\frac{1}{1}$ sont le zéro et l'unité de \mathbb{Q} .

Exercice 8. (*) Soit K un corps, et $f,g\in K[x]$ deux polynômes pas tous les deux nuls. Considérons l'ensemble des diviseurs communs à f et g:

$$\mathcal{D}_{f,g}=\{d\in K[x]\ :\ d|f,d|g\}.$$

- 1. Montrer qu'il existe un unique polynôme $d \in \mathcal{D}_{f,g}$ unitaire et de degré maximal.
- 2. Montrer que $d = \gcd(f, g)$.