
The advantage of using eligibility traces
Table of contents

1. Introduction
2. Imports and examples
3. One step horizon
4. Implementation of TD-algorithms
5. Test your algorithms
6. Exploration-Exploitation dilemma
7. Eligibility traces
8. Bonus questions

Introduction

file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23introduction
file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23Imports-And-Examples
file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23One-step-horizon
file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23your-implementations
file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23test-your-algos
file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23Exploration-vs-Exploration
file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23traces
file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/environment1_solutions.html%23bonus

Imports and examples
Please import the environment from environment1.py .

In this first computational exercise session, you will learn how eligibility traces can lead to
more efficient training. As you have discussed in the lecture, standard temporal-
difference methods, such as Q-Learning or Sarsa, leverage bootstrapping and update -
values based on the consistency relation derived by the Bellman equation, i.e.

for -Learning and

for Sarsa. These kind of updates do not take into account the history of training before
time and therefore, their performance slows down for refined discretization schemes of
a given environment.

Eligibility traces are one of the basic mechanisms of reinforcement learning. They are
implemented by defining a shadow variable for each state-action pair and
they can be combined with almost any temporal-difference (TD) method, such as Q-
learning or Sarsa, to obtain a more general method that learns more quickly and more
efficiently. When TD methods are augmented with eligibility traces, they produce a family
of methods spanning a spectrum that has Monte Carlo methods at one end and one-step
TD methods at the other.

An eligibility trace is a temporary record of the occurrence of an event, such as the
visiting of a state or the taking of an action. The trace marks the memory parameters
associated with the event as eligible for undergoing learning changes. When a TD error
occurs, only the eligible states or actions are assigned credit or blame for the error. This
helps propagating the information back from the rewarded states to the initial states in a
faster and more robust way.

For the sake of convenience, you find below the pseudocode for Sarsa() with eligibility
traces.

Q

Q(st, at) = Q(st, at) + α(rt + γ max
a

Q(st+1, a) − Q(st, at)) (1)

Q

Q(st, at) = Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at)) (2)

t

e(s, a) (s, a)

λ

For i = 1, ⋯ , n

Set e(s, a) = 0 ∀(s, a)
While current episode is not ended

Rescale all traces e(s, a) = λe(s, a) ∀(s, a)
Choose at ∼ π(⋅|st), observe rt and st+1

e(st, at) = e(st, at) + 1
Update Q(s, a) = Q(s, a) + α ∗ (rt + γQ(st+1, at+1) − Q(st, at))e(s, a) ∀(s

t ← t + 1
End while

End for

TMaze

The environment used in this exercise session is a T Maze. You can find a sketch of the
environment in environment1.py or by running the cell below. Starting from the
bottom of the Maze, the agent's goal is basically to:

1. Learn quickly to arrive at the bifurcation of the T Maze.
2. Once there, learn the direction (left or right) giving the highest reward.

The possible actions that the agent can take from a generic state are "u" (up), "d"
(down), "l" (left) or "r" (right). Infeasible moves, such as going down, left or right from the
initial state, are forbidden. Reaching the goal state on the left gives a +1 reward, while the
reward for reaching the right end-state of the bifurcation is +2. All other actions have a
reward equal to 0.

Because we are interested in different discretizations of the maze to test the advantage
of eligibility traces, to initialize the environment you should, in general, type

env = TMaze(a, b)

where is the number of steps required from the bifurcation to the two rewarded states
and is the number of steps the agent must move up to arrive at the bifurcation from the
initial state. Thus, the state representation follows this convention:

1. The initial state is the origin .
2. The bifurcation state is labelled as .
3. The two rewarded states are in positions (reward=1) and (reward=2)

respectively.

Additionally, the environment has the following methods:

end : Attribute of the class that becomes true when the environment is in one of the
goal states.
get_state() : Returns the current state.
reset() : Reset the environment, i.e. set the state back to the origin and set

the accumulated reward to .
get_initial_state() : Returns the starting point of every training episode. This

statically returns .
get_num_actions() : Returns the number of maximum available actions. This

statically returns 4 for this environment.
get_num_states() : Returns the number of possible states. This corresponds to

In [1]: import matplotlib.pyplot as plt

Load the autoreload extension
%load_ext autoreload
%autoreload 2

Import the BinaryTreeMaze environment
from environments.environment1 import TMaze

a

b

(0, 0)
(0, b)

(−a, b) (a, b)

(0, 0)
0

(0, 0)

 where and are defined above.
get_direct_path_len() : Returns the length of the direct path from the starting

state to the rewarded states, namely .
available() : Returns a list of available actions from the current state, i.e. a

subset of ["u", "d", "l", "r"] .
do_action(action) : Takes the action action in the current state. It returns a

tuple (state, reward) corresponding to the new state after the action is taken
and the reward obtained by the agent along the transition.
reward() : Returns the reward for getting to the current state. This is a reward of

if the agent reaches the goal state , a reward of if the agent reaches the
goal state , a reward of otherwise.
encode_action(action) : Maps the strings of the possible actions ["u", "d",
"l", "r"] to the integers [0, 1, 2, 3] .
inverse_encoding(action) : Inverse map of encode_action(action) .
neighbours() : Returns a list of the neighbours states of the current state of the

environment.
render(Q=None) : Prints the current game state. If no set of Q-values is passed

(run the cell below for an example), this functions simply plots the environment: the
starting state is marked by a green circle, the two goal states are represented by a
blue star and the current position of the agent by a red cross. If a set of Q-values, it
shows a heatmap of the Q-values passed in input (see examples below after your
implementation of the algorithms).
render(Q=None) : Prints the current game state. If no set of Q-values is passed

(run the cell below for an example), this functions simply plots the environment: the
starting state is marked by a green circle, the two goal states are represented by a
blue star and the current position of the agent by a red cross. If a set of Q-values, it
shows a heatmap of the Q-values passed in input (see examples below after your
implementation of the algorithms).

2a + b + 1 a b

a + b

1
(−a, b) 2

(a, b) 0

In [2]: # Initialize the environment with default parameters
env = TMaze(2, 5)

Render the maze and show the plot
env.render()
plt.show()

Additionally to carrying out a comparison between TD algorithms with and without traces,
you will also compare two different policies for action selection during training:

1. -greedy policy: given a state and a set of -values , the -greedy policy
chooses:

with probability the action , where ties are broken
randomly;
with probability a random action, where ties are broken randomly.

1. : given a state and a set of -values , it chooses the actions
sampling from the probability distribution defined as

where is the so-called scaling parameter.

Implement utilities for action selection

Exercise 0: One step horizon
Start by considering a one step horizon reward scheme, i.e. the highest rewarded states
are immediately reached after one step from the beginning. To do this, set and

 in the initialization of the environment. Let us import the Sarsa algorithm
implementation.

ϵ s Q Q ϵ

1 − ϵ a⋆ = argmaxaQ(s, a)

ϵ

Softmax policy s Q Q

π(⋅|s)

π(a|s) = , (3)
exp(βQ(s, a))

∑
a′ exp(βQ(s, a′))

β > 0

In [3]: from RL_algorithms.algorithms import epsilon_greedy, softmax_

a = 1
b = 0

In [4]: from RL_algorithms.algorithms import sarsa

Before running any further experiment, answer the following questions:

1. For a learning rate and starting -values equal to zero, convergence to the
exact -values can be retained in 2 steps if the agent chooses action "left" at the
first episode and "right" at the second episode.

2. Let us denote by and the state-action values for the left and right actions,
respectively. From the Sarsa update, we have the recurrence relations

with . The above recurrence relations can be solved explicitly; this yields

Thus, we simply need . Hence , or equivalently

.

1. For (i.e. greedy policy) the agent will pick the same action in all the episodes
after the first one, so one -value will remain to zero and convergence won't be
retained.

Thus, the requested couple is and .

1. Using a soft-max policy makes sure that action probabilities are never zero, so we
discard the above scenario in which with probability 1 always the same action is
taken and the agent does not explore an entire part of the state space (left or right).
An exploratory policy which guarantees that the agent does not remain stuck in a
suboptimal policy (always receiving a reward equal to one) can be achieved by taking
small values of . High values of yield a policy which approaches a deterministic
one.

α = 1 Q

Q

ql qr

qr
t+1 = qr

t
+ α(2 − qr

t
) = (1 − α)qr

t
+ 2α, ql

t+1 = ql
t

+ α(1 − ql
t
) = (1 − α)ql

t
+ α

ql
0 = qr

0 = 0

qr
t

= 2α () = 2(1 − (1 − α)t), ql
t

= α () = 1 − (1
(1 − α)t − 1
(1 − α) − 1

(1 − α)t − 1
(1 − α) − 1

1 − (1 − α)t ≥ 0.95 (1 − α)t ≤ 0.05

t ≥ ()log(0.05)
log(1−α)

ϵ = 0
Q

ϵ = 0 α = 1

β β

In [5]: env = TMaze(1, 0)
alpha = 0.5 # alpha = 0.5 means at least 5 episodes for each action

GREEDY POLICY
print("============ GREEDY POLICY ==============")
Q, stats = sarsa(env, num_episodes=5, epsilon_exploration=0, alpha=alpha)
print("5 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=10, epsilon_exploration=0, alpha=alpha)
print("10 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=15, epsilon_exploration=0, alpha=alpha)
print("15 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=20, epsilon_exploration=0, alpha=alpha)
print("20 episodes ---> ", Q[(0, 0)])

0.5 GREEDY POLICY
print("============ 0.5 GREEDY POLICY ==========")
Q, stats = sarsa(env, num_episodes=5, epsilon_exploration=0.5, alpha=alpha)
print("5 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=10, epsilon_exploration=0.5, alpha=alpha
print("10 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=15, epsilon_exploration=0.5, alpha=alpha
print("15 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=20, epsilon_exploration=0.5, alpha=alpha
print("20 episodes ---> ", Q[(0, 0)])

EXPLORATORY SOFTMAX POLICY
print("============ EXPLORATORY SOFTMAX POLICY ==============")
Q, stats = sarsa(env, num_episodes=5, action_policy='softmax_', epsilon_exploration
print("5 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=10, action_policy='softmax_', epsilon_exploration
print("10 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=15, action_policy='softmax_', epsilon_exploration
print("15 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=20, action_policy='softmax_', epsilon_exploration
print("20 episodes ---> ", Q[(0, 0)])

EXPLOITATORY SOFTMAX POLICY
print("============ EXPLOITATORY SOFTMAX POLICY ==============")
Q, stats = sarsa(env, num_episodes=5, action_policy='softmax_', epsilon_exploration
print("5 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=10, action_policy='softmax_', epsilon_exploration
print("10 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=15, action_policy='softmax_', epsilon_exploration
print("15 episodes ---> ", Q[(0, 0)])
Q, stats = sarsa(env, num_episodes=20, action_policy='softmax_', epsilon_exploration
print("20 episodes ---> ", Q[(0, 0)])

============ GREEDY POLICY ==============
5 episodes ---> [0. 0. 0. 1.9375]
10 episodes ---> [0. 0. 0.99902344 0.]
15 episodes ---> [0. 0. 0.99996948 0.]
20 episodes ---> [0. 0. 0.99999905 0.]
============ 0.5 GREEDY POLICY ==========
5 episodes ---> [0. 0. 0.75 1.75]
10 episodes ---> [0. 0. 0.75 1.9921875]
15 episodes ---> [0. 0. 0.99951172 1.875]
20 episodes ---> [0. 0. 0.875 1.99998474]
============ EXPLORATORY SOFTMAX POLICY ==============
5 episodes ---> [0. 0. 0.5 1.875]
10 episodes ---> [0. 0. 0.75 1.9921875]
15 episodes ---> [0. 0. 0.5 1.99987793]
20 episodes ---> [0. 0. 0.9375 1.99996948]
============ EXPLOITATORY SOFTMAX POLICY ==============
5 episodes ---> [0. 0. 0. 1.9375]
10 episodes ---> [0. 0. 0. 1.99804688]
15 episodes ---> [0. 0. 0.99996948 0.]
20 episodes ---> [0. 0. 0.99999905 0.]

Exercise 1: Implementation of TD algorithms

Implementation of Q-Learning(), Sarsa() and -step Sarsa
When implementing eligibility traces, the standard version of the algorithms are
recovered for . On the other hand, note that gives Monte Carlo methods for
state-action value estimation.

Test your algorithms

1. In 200 episodes the -values still have in general to converge. This can be seen for
example by looking at the Sarsa(0) heatmap, in particular the -value for "correcting
the direction at the branch" after moving left (i.e. action "right" in the first state on
the left branch of the T Maze) has still a very small value, because it is rarely
explored during training. These are the most difficult values to be updated if there is
not enough exploration, because the route that takes the agent from this state
directly to the high reward is very unlikely to be followed.

2. On the other hand, the policy has converged in all cases and the agent, by playing
greedily with the learned -values, is able to reach the high reward directly in the
minimum number of steps.

3. Given the large number of episodes played, there is no difference to be appreciated
between the standard algorithms and the trace-decay algorithms.

λ λ n

λ = 0 λ = 1

In [6]: from RL_algorithms.algorithms import q_learning, sarsa, n_step_sarsa
env = TMaze(2,5)

In [7]: from RL_algorithms.utils import play

Q

Q

Q

In [8]: # Q-Learning(0)
Q, stats = q_learning(env, gamma=0.9, num_episodes=200, epsilon_exploration
env.render(Q)
play(env, Q)

In [9]: # Sarsa(0)
Q, stats = sarsa(env, gamma=0.9, num_episodes=200, epsilon_exploration=0.5,
env.render(Q)
play(env, Q)

In [10]: # Q-Learning(\lambda)
Q, stats = q_learning(env, gamma=0.9, num_episodes=200, epsilon_exploration
env.render(Q)
play(env, Q)

In [11]: # Sarsa(\lambda)
Q, stats = sarsa(env, gamma=0.9, num_episodes=200, epsilon_exploration=0.5,
env.render(Q)
play(env, Q)

In [12]: # n-step Sarsa
Q, stats = n_step_sarsa(env, gamma=0.9, num_episodes=200, epsilon_exploration
env.render(Q)
play(env, Q)

Exercise 2: Exploration-Exploitation dilemma

1. Assume , i.e. the agent always chooses the best action available according to
the current estimates of the -values. The problem with this kind of approach, given
that the -values are all initialized to zero, is that one of the goal states (and
possibly other states/actions too) remains unexplored during training. At the first
episode the agent will update the -values to one goal state and the Q-value of all
state-action pairs leading to the other goal state remain zero, so with a greedy policy,
the agent will never try these other actions/states in the next episodes.

2. A greedy policy performs badly, as just explained above. On the other hand, taking
too large may slow down learning because "good/promising paths" are not explored
preferentially. Intermediate values should provide the best trade-off between
exploration and exploitation. As a side note, a common strategy which you may try
and implement is to decay over time, as to favour exploration during the first
episodes and exploitation at the end of training.

The numerical results are showing, coherently with the discussion above, that is
the best exploration rate.

ϵ = 0
Q

Q

Q

ϵ

ϵ

ϵ = 0.5

In [13]: from RL_algorithms.utils import *

Hyperparameters
gamma = 0.9
alpha = 0.1
trace_decay = 0.8
num_avg = 30

params = {
 'gamma' : gamma,
 'alpha' : alpha,
 'action_policy': "epsilon_greedy"
}

Q_LEARNING_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\epsilon = 0$',
 'params': {**params, 'epsilon_exploration': 0}
}

Q_LEARNING_20_PERCENT_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\epsilon = 0.2$',
 'params': {**params, 'epsilon_exploration': 0.2}
}

Q_LEARNING_50_PERCENT_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\epsilon = 0.5$',
 'params': {**params, 'epsilon_exploration': 0.5}
}

Q_LEARNING_80_PERCENT_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\epsilon = 0.8$',
 'params': {**params, 'epsilon_exploration': 0.8}
}

Q_LEARNING_RANDOM = {
 'algo_name': 'q_learning',
 'name': r'$\epsilon = 1$',
 'params': {**params, 'epsilon_exploration': 1}
}

algorithms = [Q_LEARNING_GREEDY, Q_LEARNING_20_PERCENT_GREEDY, Q_LEARNING_50_PERCENT_GREEDY
 Q_LEARNING_80_PERCENT_GREEDY, Q_LEARNING_RANDOM]

env = TMaze(2, 5)
compare_episodes_lengths_and_rewards(env=env, algos=algorithms, num_avg=num_avg
 show_std=True, additional_params=[{"num_episodes"

1. Small values of should guarantee a better exploration during training. Very high
values of (e.g. 50 or 100) should yield an almost greedy policy.

2. Similarly to the discussion above for the exploration rate with a greedy policy,
intermediate values of should provide the best trade-off.

The best value of according to the numerical experiments is indeed .

β

β

ϵ

β

β β = 5

In [14]: from RL_algorithms.utils import *

Hyperparameters
gamma = 0.9
alpha = 0.1
num_avg = 30

params = {
 'gamma' : gamma,
 'alpha' : alpha,
 'action_policy': 'softmax_'
}

Q_LEARNING_NON_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\beta = 0.1$',
 'params': {**params, 'epsilon_exploration': 0.1}
}

Q_LEARNING_1_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\beta = 1$',
 'params': {**params, 'epsilon_exploration': 1}
}

Q_LEARNING_5_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\beta = 5$',
 'params': {**params, 'epsilon_exploration': 5}
}

Q_LEARNING_10_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\beta = 10$',
 'params': {**params, 'epsilon_exploration': 10}
}

Q_LEARNING_100_GREEDY = {
 'algo_name': 'q_learning',
 'name': r'$\beta = 100$',
 'params': {**params, 'epsilon_exploration': 100}
}

algorithms = [Q_LEARNING_NON_GREEDY, Q_LEARNING_1_GREEDY, Q_LEARNING_5_GREEDY

env = TMaze(2, 5)
compare_episodes_lengths_and_rewards(env=env, algos=algorithms, num_avg=num_avg
 show_std=True, additional_params=[{"num_episodes"

Exercise 3: Comparison of RL algorithms for different
discretization schemes
As stated in the introduction, the main goal of this computational exercise session is to
understand how the coupling of TD algorithms with eligibility traces can provide benefits
for the learning of an agent with respect to the case .

1. In the case on a T-Maze(), at least episodes are needed to
propagate back the reward information from the goal states to the origin: at every
episode the information is propagated one step closer to the origin.

2. For , this happens already at the end of the first episode: as soon as the agent
reaches one of the goal states and gets a reward, all Q-values on the path of the
episode are updated.

We now consider the best value of for the experiments below with a -greedy
policy.

1. The performance of -Learning and Sarsa without any eligibility traces is not
independent of the discretization, because with a larger number of states more
episodes are needed to backpropagate information to the origin.

2. This can be mitigated by -Learning() and Sarsa(), as we discussed above.
However, we cannot claim that the performance is independent of the discretization
scheme, because to have the same speed of backpropagation we should maintain
the quantity constant, being and defined as above. You will discuss this
later in the course, but could you explain already now why this quantity should be
always the same when changing discretization scheme?

λ = 0

λ = 0 a, b a + b

λ ≠ 0

ϵ = 0.5 ϵ

Q

Q λ λ

λ(a+b) a b

file:///Users/lcn1/Desktop/Athese/ANN/deep-learning-class/computer_exercises/2023/notebooks-solutions/environment1/introduction

In [15]: from RL_algorithms.utils import *

Hyperparameters
epsilon_exploration = 0.5
gamma = 0.9
alpha = 0.1
trace_decay = 0.8
num_avg = 30

params = {
 'epsilon_exploration' : epsilon_exploration,
 'gamma' : gamma,
 'alpha' : alpha,
}

Q_LEARNING = {
 'algo_name': 'q_learning',
 'name': 'Q-Learning(0)',
 'params': params,
}

Q_LEARNING_LAMBDA = {
 'algo_name': 'q_learning',
 'name': 'Q-Learning(λ)',
 'params': {**params, 'trace_decay': trace_decay}
}

SARSA = {
 'algo_name': 'sarsa',
 'name': 'Sarsa(0)',
 'params': params
}

SARSA_LAMBDA = {
 'algo_name': 'sarsa',
 'name': 'Sarsa(λ)',
 'params': {**params, 'trace_decay': trace_decay}
}

THREE_STEP_SARSA = {
 'algo_name': 'n_step_sarsa',
 'name': '3-step Sarsa',
 'params': {**params, 'n': 3}
}

algorithms = [Q_LEARNING, Q_LEARNING_LAMBDA, SARSA, SARSA_LAMBDA, THREE_STEP_SARSA

couples = ((1, 3), (2, 6), (3, 13))
for j, couple in enumerate(couples):
 env = TMaze(*couple)
 compare_episodes_lengths_and_rewards(env=env, algos=algorithms, num_avg
 show_std=True, additional_params=[{

Exercise 4: Rescaling of the trace decay and step parameters

1. As we already claimed above, the relation between and the number of steps
needed to backpropagate information to the origin is linear. Thus, for , we
also need .

The numerical results support the claim. Look in particular at the episode lengths plot.

s

s ← 2s

n ← 2n

In [16]: # Hyperparameters
epsilon_exploration = 0.5
gamma = 0.9
alpha = 0.1
num_avg = 30

params = {
 'epsilon_exploration' : epsilon_exploration,
 'gamma' : gamma,
 'alpha' : alpha,
 'num_episodes': 50
}

ONE_STEP_SARSA = {
 'algo_name': 'n_step_sarsa',
 'name': '1-step Sarsa',
 'params': {**params, 'n': 1}
}

TWO_STEP_SARSA = {
 'algo_name': 'n_step_sarsa',
 'name': '2-step Sarsa',
 'params': {**params, 'n': 2}
}

FOUR_STEP_SARSA = {
 'algo_name': 'n_step_sarsa',
 'name': '4-step Sarsa',
 'params': {**params, 'n': 4}
}

EIGHT_STEP_SARSA = {
 'algo_name': 'n_step_sarsa',
 'name': '8-step Sarsa',
 'params': {**params, 'n': 8}
}

SIXTEEN_STEP_SARSA = {
 'algo_name': 'n_step_sarsa',
 'name': '16-step Sarsa',
 'params': {**params, 'n': 16}
}

algorithms = {'0': [ONE_STEP_SARSA, TWO_STEP_SARSA, FOUR_STEP_SARSA],
 '1': [TWO_STEP_SARSA, FOUR_STEP_SARSA, EIGHT_STEP_SARSA],
 '2': [FOUR_STEP_SARSA, EIGHT_STEP_SARSA, SIXTEEN_STEP_SARSA]}

couples = ((2, 5), (4, 10), (8, 20))

for j, couple in enumerate(couples):
 env = TMaze(*couple)
 compare_episodes_lengths_and_rewards(env=env, algos=algorithms[str(j)],
 show_std=True, additional_params=[{

