Algèbre linéaire avancée II printemps 2024

Série 5

L'exercice marqué d'un (+) sert d'introduction à la série, tandis que celui marqué d'une (*) est plus difficile. Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Moodle 2 semaines après. Les solutions des exercices (*) et (+) seront discutées dans les séances d'exercices du mardi d'après et d'avant respectivement. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. (+) Transformez les matrices réelles suivantes en matrices diagonales dont les éléments sont 0, 1 et -1. Combien de 0, 1 et -1 sont sur la diagonale ? (Ces quantités sont appelées l'indice de nullité, l'indice de positivité et l'indice de négativité.)

$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 4 & 2 \\ 4 & 3 & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

Exercice 2. Soient les vecteurs

$$u = egin{pmatrix} 2 \ 2 \ 2 \ 2 \ \end{pmatrix}, \quad v_1 = egin{pmatrix} 0 \ 1 \ 0 \ 1 \ \end{pmatrix}, \quad v_2 = egin{pmatrix} -1 \ 1 \ 0 \ 0 \ \end{pmatrix}, \quad v_3 = egin{pmatrix} -1 \ 0 \ 1 \ 0 \ \end{pmatrix}.$$

Quelle est la distance entre u et $V=\operatorname{span}\{v_1,v_2,v_3\}$? La distance entre u et V est $\operatorname{dist}(u,V)=\min_{v\in V}\|u-v\|$, où la norme $\|\cdot\|$ est par rapport au produit scalaire ordinaire.

Exercice 3.

1. Soit V un espace vectoriel sur K avec une base $B=\{v_1,\ldots,v_n\},\,\langle\cdot,\cdot\rangle$ une forme bilinéaire symétrique, et $P\in K^{n\times n}$ inversible telle que $P^TA_B^{\langle\cdot,\cdot\rangle}P$ est une matrice diagonale.

Montrer que les éléments $u_k \in V$ tels que $[u_k]_B = P_k$, où P_k est la k-ième colonne de P, forment une base orthogonale de V.

2. Soit maintenant V un espace vectoriel sur \mathbb{Z}_3 , $B = \{v_1, v_2, v_3\}$ une base V et $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{Z}_3$ une forme bilinéaire symétrique t.q.

$$A_{B}^{\langle\cdot,\cdot
angle}=egin{pmatrix} 0&2&1\ 2&0&2\ 1&2&1 \end{pmatrix}.$$

Déterminer une base orthogonale de V.

Exercice 4. Soit $\langle\cdot,\cdot\rangle:\mathbb{Z}_2^2\times\mathbb{Z}_2^2\to\mathbb{Z}_2$ la forme bilinéaire symétrique

$$\langle x,y
angle = x^\intercal egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} y.$$

Montrer que \mathbb{Z}_2^2 ne possède pas de base orthogonale.

Exercice 5. Soient V un espace vectoriel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et $\{v_1, \ldots, v_n\} \subseteq V$ un ensemble de vecteurs deux à deux orthogonaux.

- a) Montrer le théorème de Pythagore généralisé : $\|v_1+\ldots+v_n\|^2=\|v_1\|^2+\ldots+\|v_n\|^2$.
- b) Montrer que $\{v_1,\ldots,v_n\}$ est un ensemble libre si pour tout $i,\ \langle v_i,v_i\rangle \neq 0.$

Exercice 6. Soit V un espace euclidien de dimension finie avec une base orthonormale $B = \{v_1, \ldots, v_n\}$.

1. Montrer que pour tout $v \in V$ on a

$$v = \sum\limits_{i=1}^n \langle v, v_i
angle v_i.$$

2. Pour $f, g \in V$, montrer l'identité de Parseval :

$$\langle f,g
angle = \sum_{i=1}^n \langle f,v_i
angle \langle v_i,g
angle.$$

Exercice 7. Soit $a_1, \ldots, a_m \in \mathbb{R}^n$ des vecteurs unitaires et deux à deux orthogonaux par rapport au produit scalaire standard.

Posons $A \in \mathbb{R}^{n \times m}$ la matrice dont les colonnes sont les $\{a_i\}_{i=1}^m$, et $\Pi: \mathbb{R}^n \to \operatorname{Im}(A)$ la projection orthogonale sur l'espace $\operatorname{span}(\{a_i\}_{i=1}^m)$. Par définition, $\Pi(v) = \arg\min_{u \in \operatorname{Im}(A)} \|u - v\|$.

1. Montrer que $m \leq n$ à l'aide de l'exercice 5.

- 2. Montrer que $\Pi(v) = \sum_{i=1}^m \langle v, a_i \rangle a_i$ à l'aide de l'exercice 6. En déduire que Π est une application linéaire : $\Pi(v) = Mv$ dans la base canonique pour une certaine matrice $M \in \mathbb{R}^{n \times n}$ de rang m.
- 3. Montrer que $M = AA^T$.

Exercice 8. On considère cette fois-ci une matrice $A \in \mathbb{R}^{n \times m}$ dont les colonnes sont supposées linéairement indépendantes. On considère à nouveau le cas du produit scalaire standard.

1. Montrer que $ker(A^TA) = \{0\}$ et donc que A^TA est inversible.

Soit $\Pi: \mathbb{R}^n \to \operatorname{Im}(A)$ la projection orthogonale sur $\operatorname{Im}(A)$, et soit $A = A^*R$ la décomposition QR de A (corollaire 3.19 des notes du cours).

- 2. Montrer que R est inversible et donc que Π coïncide avec la projection orthogonale sur $\operatorname{Im}(A^*)$. Déduire de l'exercice précédent que $\Pi = A^*(A^*)^T$.
- 3. Montrer que $A^T A = R^T R$.
- 4. Conclure que $\Pi = A(A^TA)^{-1}A^T$.

Exercice 9. Soit $\langle \cdot, \cdot \rangle$ le produit scalaire standard dans \mathbb{R}^n . Trouver une factorisation $A = A^*R$ du corollaire 3.19 des matrices suivantes:

$$A_1 = egin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 imes 3}, \hspace{1cm} A_2 = egin{pmatrix} 1 & 0 & \cdots & 0 \ 1 & 1 & \ddots & dots \ 0 & 1 & \ddots & 0 \ dots & \ddots & \ddots & 1 \ 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathbb{R}^{(n+1) imes n}.$$

- Exercice 10. 1. Soit V un espace vectoriel de dimension finie sur \mathbb{R} , et $\langle \cdot, \cdot \rangle$ un produit scalaire. Montrer que $V = W \oplus W^{\perp}$ est satisfait pour tout sous-espace $W \subseteq V$. Conclure que $\dim V = \dim W + \dim W^{\perp}$.
 - 2. Soit V un espace vectoriel de dimension n sur \mathbb{R} , et soient $f,g\in V^*\setminus\{0\}$ deux fonctionnelles linéairement indépendantes. Montrer que

$$\dim(\ker f \cap \ker g) = n - 2.$$

Rappel: Si V est un espace vectoriel sur un corps K, son espace dual V^* est l'ensemble des applications linéaires $\phi:V\longrightarrow K$, muni de l'addition et de la multiplication scalaire usuelles.

Exercice 11. (*) Le but de cet exercice est de montrer l'inégalité d'Hadamard, c'est-àdire

$$|\det(A)| \leq \prod_{i=1}^n \|a_i\|_2,$$

pour $A \in \mathbb{R}^{n \times n}$ dont les colonnes sont a_1, \ldots, a_n .

Soit A' la matrice dont les colonnes sont a_1^*, \ldots, a_n^* , les vecteurs non-normalisés issus de l'orthogonalisation de Gram-Schmidt sur les colonnes de A. On rappelle la décomposition A = A'S, où S est triangulaire supérieure de diagonale 1.

- 1. Montrer que $\det(S)=1$ et que $\det(A)=\det(A')=\pm\prod_{i=1}^n\|a_i^*\|_2$.
- 2. Montrer que $||a_i^*|| \leq ||a_i|| \ \forall i = 1, \ldots, n$, et conclure.

Supposons de surcroît que les coefficients de A soient tous bornés absolument par $M \in \mathbb{R}_+ : |A_{ij}| \leq M \ \forall i,j$. Déduire de l'inégalité d'Hadamard que $|\det(A)| \leq M^n n^{n/2}$.