Homework 6 (Graded): due Monday, April 22, 2024
(CS-526 Learning Theory

Problem 1. Gradient Descent for Positive Semi-definite Matrices

Let X, Y € R™™ be n x n real matrices and A, B € R™"™ be n x n real symmetric and
positive definite matrices. Let F' : R™™ — R the function F(X) = 1TrX”BX.

1. Show that F/(X) > 0 for any X.
2. Compute the second derivative of
f(8) =Tr(sXT 4+ (1 —s)Y)B(sX + (1 —s5)Y)
for s € [0,1] and deduce that F' is a convex function.
3. Deduce the inequality F(Y) — F(X) > TrXTB(Y — X). Is F Lipschitz ?

4. Consider now the function G : R™" — R with G(X) = 1Tr(X — I)TA(X — I) where
I is the identity matrix. Define L(X) = F(X) + G(X).

(a) Write down the gradient descent algorithm for L. Call X, the updated matrix at
time ¢.

(b) Assume that the operator norm || X;|| < M stays bounded uniformly in ¢. Show
that
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Problem 2. Gradient Descent.

Let f : R* — R be a convex Lipshitz continuous differentiable function with Lipshitz constant
p > 0. Let S be a real symmetric strictly positive-definite d x d matrix with smallest
eigenvalue A\, > 0. We consider a gradient descent iteration for ¢ > 1 and step size n > 0:

xtJrl — :Ut - nSilef(xt) (1)

with initial condition 2' = 0. Further, define 2* = argmin,cp r)f(z), where B(0, R) is
the ball of radius R.

1. Show that if we choose the step size n = R—M;%’\m“‘ after T iterations we have
T
1 R >\max
F(F 2.4 - <= )
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Hint: recall that in class we proved this statement when S = I the identity matriz.
Here you can use an eigenvalue decomposition S~ = UTA=U. The following is also
useful:

d
(Vf (2"),2" —a*) =(UVf (2') ,Us" = Uz*) = Z(UVf)k(xt) (Uz' = Uz"),
k=1

Justify why these steps can be used.

Problem 3. (adapted from 14.3, Understanding Machine Learning)

Let S = ((x1,¥1), -+, (Xm,Ym)) € (R¥x {—1,+1})™. Assume that there exists w € R such
that for every i € [m] we have y;(w,x;) > 1, and let w* be a vector that has the minimal
norm among all vectors that satisfy the preceding requirement. Let R = max; ||x;||. Define
a function f(w) = max;em (1 — yi(w, x;)).

—_

Show that minw:Hw”SHW*” f(W) = 0.

. Show that any w for which f(w) < 1 separates the examples in S.

Show how to calculate a subgradient of f.

Describe a subgradient descent algorithm for finding a w that separates the examples.
Show that the number of iterations 7" of your algorithm satisfies

T < R?|w|*.

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section
9.1.2. for the analysis.

(Not graded) Compare your algorithm to the Batch Perceptron algorithm.



