
Homework 6 (Graded): due Monday, April 22, 2024
CS-526 Learning Theory

Problem 1. Gradient Descent for Positive Semi-definite Matrices

Let X, Y ∈ Rn×n be n × n real matrices and A,B ∈ Rn×n be n × n real symmetric and
positive definite matrices. Let F : Rn×n 7→ R the function F (X) = 1

2
TrXTBX.

1. Show that F (X) ≥ 0 for any X.

2. Compute the second derivative of

f(s) = Tr(sXT + (1− s)Y T )B(sX + (1− s)Y )

for s ∈ [0, 1] and deduce that F is a convex function.

3. Deduce the inequality F (Y )− F (X) ≥ TrXTB(Y −X). Is F Lipschitz ?

4. Consider now the function G : Rn×n 7→ R with G(X) = 1
2
Tr(X − I)TA(X − I) where

I is the identity matrix. Define L(X) = F (X) +G(X).

(a) Write down the gradient descent algorithm for L. Call Xt the updated matrix at
time t.

(b) Assume that the operator norm ∥Xt∥ ≤ M stays bounded uniformly in t. Show
that

∥ 1
T

T∑
t=1

Xt − (B + A)−1A∥ ≤ 2M

ηT
∥(B + A)−1∥

Problem 2. Gradient Descent.

Let f : Rd → R be a convex Lipshitz continuous differentiable function with Lipshitz constant
ρ > 0. Let S be a real symmetric strictly positive-definite d × d matrix with smallest
eigenvalue λmin > 0. We consider a gradient descent iteration for t ≥ 1 and step size η > 0:

xt+1 = xt − ηS−1∇f(xt) (1)

with initial condition x1 = 0. Further, define x∗ = argmin∥x∥∈B(0,R)f(x), where B(0, R) is
the ball of radius R.

1. Show that if we choose the step size η = R
√
λmaxλmin

ρ
√
T

after T iterations we have

f
( 1
T

T∑
t=1

xt
)
− f(x∗) ≤ ρR√

T

√
λmax

λmin

1



Hint: recall that in class we proved this statement when S = I the identity matrix.
Here you can use an eigenvalue decomposition S−1 = UTΛ−1U . The following is also
useful:

〈
∇f

(
xt
)
, xt − x∗〉 =

〈
U∇f

(
xt
)
, Uxt − Ux∗〉 = d∑

k=1

(U∇f)k(x
t)
(
Uxt − Ux∗)

k

Justify why these steps can be used.

Problem 3. (adapted from 14.3, Understanding Machine Learning)

Let S = ((x1,y1), . . . , (xm,ym)) ∈ (Rd×{−1,+1})m. Assume that there exists w ∈ Rd such
that for every i ∈ [m] we have yi⟨w,xi⟩ ≥ 1, and let w⋆ be a vector that has the minimal
norm among all vectors that satisfy the preceding requirement. Let R = maxi ∥xi∥. Define
a function f(w) = maxi∈[m](1− yi⟨w,xi⟩).

1. Show that minw:∥w∥≤∥w⋆∥ f(w) = 0.

2. Show that any w for which f(w) < 1 separates the examples in S.

3. Show how to calculate a subgradient of f .

4. Describe a subgradient descent algorithm for finding a w that separates the examples.
Show that the number of iterations T of your algorithm satisfies

T ≤ R2∥w∗∥2.

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section
9.1.2. for the analysis.

5. (Not graded) Compare your algorithm to the Batch Perceptron algorithm.


