
Last Name First Name..................

Artificial Neural Networks: Exam (with solutions)

29th of June 2023

• Keep your bag next to your chair, but do not open it during the exam.

• Write your name in legible letters on top of this page.

• The exam lasts 180 min. (The estimated times per section add up to 160

min)

• Write all your answers in a legible way on the exam (no extra sheets).

• No documentation is allowed (no textbook, no slides), except one page A5

of handwritten notes, doublesided.

• No calculator is allowed.

• Have your student card displayed in front of you on your desk.

• Check that your exam has 10 pages.

Evaluation:

1. / 5 pts (Section 1 - estimated time 20 min)

2. / 7 pts (Section 2 - estimated time 35 min)

3. / 8 pts (Section 3 - estimated time 35 min)

4. / 12 pts (Section 4 - estimated time 70 min)

————————–

Total: / 32 pts

1

This page remains empty. You can use it as free space for your calcu-

lations, do not use to write down answers.

2

Definitions and notations

RL stands for Reinforcement Learning.

The symbol η is reserved for the learning rate.

Bold face symbols refer to vectors, normal face to a single component or a single

input/output. Unless noted otherwise, the input is N -dimensional: xµ ∈ RN

In the context of reinforcement learning, the symbol a refers to an action; the

symbols r and R to a reward; the symbol s to a discrete state; and the symbol γ

to a discount rate.

If the state space is continuous then states are also written as x.

If algorithms are implemented as neural networks, the parameters are the weights

wij from neuron j to neuron i. In a multilayer network an upper index (k) refers

to the layer, so that we write w
(k)
ij . Hence w

(l)
nm refers to the connection from of

neuron m in layer l − 1 to neuron n in layer l.

In many RL applications, there is a single goal state (terminal state). An action

sequence that ends at the goal is called an episode.

How to give answers

All sections involve short calculations. Please write the answers in the space

provided for that purpose.

We also provide some free space for calculations. We will not look at these parts

for grading. You can ask for extra scratch paper. We will not look at the scratch

paper.

3

1 3-step SARSA (5 points). Estimated time: 20 minutes

We approximate Q-values Q(x, a) by function approximation in a deep neural

network with weights w
(k)
ij where i = 1, 2, . . . and j = 1, 2, . . . are arbitrary neuron

indices and k is the layer-index. The input x is continuous.

(i) Write down a reasonable loss function resulting from the consistency condi-

tion of the Bellman equation for the case of 3-step SARSA. Consider both the

BATCH version of the loss and the ONLINE version of the loss (the ONLINE

version should contain only a minimal set of time steps necessary to implement

SARSA updates). Choose an appropriate and understandable notation.

BATCH:

Loss Lbt =
〈

1
2

(
r + γr′ + γ2r′′ + γ3Q(x′′′, a′′′)−Q(x, a)

)2〉
ONLINE:

Loss Lon = 1
2

(
r + γr′ + γ2r′′ + γ3Q(x′′′, a′′′)−Q(x, a)

)2
number of points:/ 2

(ii) Derive an online update rule for the specific weight w
(k)
nm starting from the

ONLINE Loss Lon in (i) using semigradient (we write ∆sg and ∆fg for updates

with semigradient and full gradient, respectively)

∆sgw
(k)
nm = η

(
r + γr′ + γ2r′′ + γ3Q(x′′′, a′′′)−Q(x, a)

)
∂Q(x,a)

∂w
(k)
nm

number of points:/ 2

(iii) Write down the DIFFERENCE between the online update rule with semi-

gradient ∆sgw
(k)
nm on the ONLINE loss Lon in (i) and that with the full gradient

∆fgw
(k)
nm (standard stochastic gradient) on the ONLINE loss Lon in (i).

DIFFERENCE

∆sgw
(k)
nm −∆fgw

(k)
nm= η

(
r + γr′ + γ2r′′ + γ3Q(x′′′, a′′′)−Q(x, a)

)
γ3 ∂Q(x′′′,a′′′)

∂w
(k)
nm

number of points:/ 1

Space for your calculations, not for answers

4

2 Policy Gradient for 1-step horizon: Contextual Bandit Problem (7

points). Estimated time 35 min

The agent (bandit) can choose amongst N actions a = 1, 2, . . . , N . Inputs are

denoted by x. Action a = i (with 1 ≤ i ≤ N) is chosen with probability

π(a = i|x; w1, . . . ,wN) =
[
∑10

k=1wikyk]
β∑

j[
∑10

k=1wjkyk]
β
, (1)

where β ∈ {2, 4, 6, . . . } is a metaparameter, wi = (wi1, . . . , wi10) is the weight

vector for action a = i, and yk = f(x − ck) with 1 ≤ k ≤ 10 is a set of ten

basis functions. The agent reacts to an input x with an action a and receives a

deterministic reward r(x, a). At each time step a new input x is drawn from a

stationary distribution P (x).

(i) Write down the expected reward E[r(x, a)|w1, . . . ,wN] for the policy with

parameters w1, . . . ,wN :

E[r(x, a)|w1, . . . ,wN] =
∫
p(x)

∑N
i=1 π(a = i)r(x, i)dx

number of points:/ [1]

(ii) What is the stochastic online version of the gradient E[r(x, a)|w1, . . . ,wN]

with respect to a weight wnm? Write down the result.

∆wnm = ηr(x, i)∂ lnπ(a=i)
∂wnm

= ηr(x, i) βym∑
k wnkyk

[δn,i − π(a = n)] with i the selected action

number of points:/ [2]

(iii) Show that in expectation your online version in (ii) leads back to correct

gradient of E[r(x, a)|w1, . . . ,wN]

E
[
r(x, a)

∂ lnπ(a)

∂wnm

]
=

∫
p(x)

N∑
i=1

π(a = i)r(x, i)
∂ lnπ(a = i)

∂wnm
dx

=

∫
p(x)

N∑
i=1

π(a = i)r(x, i)
1

π(a = i)

∂π(a = i)

∂wnm
dx

=

∫
p(x)

N∑
i=1

r(x, i)
∂π(a = i)

∂wnm
dx =

∂E[r(x, a)]

∂wnm

number of points:/ [2]

(iv) Take your result from (ii), separate a common factor ηβ/(
∑

k wnkyk) from the

remaining terms, and use Eq. (1) to find an elegant and compact formula for the

update of the weight wnm:

∆wnm= ηβ∑
k wnkyk

ymr(x, i)[δn,i − π(a = n)]

number of points:/ [2]

5

3 1-step and 2-step Q-learning in the tabular setting (8 points). Esti-

mated time: 35 min

In class we have discussed the SARSA algorithm and shown that, if the Q-values

have converged, the resulting set of Q-values solves in expectation the Bellman

equation. Here the task is to do a related calculation for Q-learning.

The agent uses an epsilon-greedy policy. The update step is

∆Q(st, at) = η [rt + γmaxa′Q(st+1, a
′)−Q(st, at)] (2)

The update step is applied after every action.

(i) Assume that the Q-learning algorithm has converged in expectation, i.e., the

expecation of the update step is E[∆Q(st, at)] = 0. Show that E[∆Q(s, a)] = 0 for

all pairs (s, a) implies that the set of Q-values solves the optimal Bellman equation.

(1) E [∆Q(st, at)|st, at] = 0

(2) E [Q(st, at)|st, at] = E [rt + γmaxa′ Q(st+1, a
′)|st, at]

(3) Q(st, at) = E [rt + γmaxa′ Q(st+1, a
′)|st, at]

(4) Q(st, at) =
∑

s′ p(s
′|st, at)

[
Rat
st→s′ + γmaxa′ Q(s′, a′)

]
Line (4) is the final result. For the transitions from lines (1) to (2) to (3) to (4) I

used the following identities or arguments:

(1) to (2) Equation 2.

(2) to (3) Q(st, at) is constant conditioned on st and at.

(3) to (4) Definitions of expectation and the expected reward.

number of points:/ [2]

(ii) So far we have looked at the standard version of Q-learning which we call

Variant A1 in the following. Your friend Bob proposes an alternative (Variant B)

of the algorithm as follows: As before we run an epsilon-greedy policy, but to be

sure that we remain optimal, we apply the update step (given above in Eq. (2))

only if the best action is chosen at time t, i.e., at = a∗(st) = maxa′Q(st, a
′). Your

friend Alice says that convergence of Q-values E[∆Q(s, a)] = 0 for all pairs (s, a)

in Variant B does not guarantee that the set of Q-values is consistent with the

Bellman equation.

6

Is Alice right? Give a mathematical argument or an intuitive interpretation.

Alice is right! In variant B, the argument for going from (1) to (2) in our proof above

does not hold because E [∆Q(st, at)|st, at] = 0 can also imply that at 6= a∗(st).

number of points:/ [2]

(iii) Now we repeat the same arguments for 2-step Q-learning. Again we consider

two variants.

In variant A2 the update step is applied after every action (for all time steps

t > 2). Your friend Claire proproses an alternative (Variant C) where the update

rule is applied only if the epsilon-greedy algorithm chooses the greedy action for

the intermediate step of the algorithm, i.e. at+1 = a∗(st+1) = maxa′Q(st+1, a
′).

Your friend Dominique claims that (at least) one of the Variants A2 or C is con-

sistent with the Bellman equation. To check whether Dominique is correct, let

us assume that the 2-step Q-learning algorithm has converged in expectation, i.e.,

the expecation of the update step is E[∆Q(st, at)] = 0.

Choose either variant A2 or C (whichever works best for your arguments) and

show that E[∆Q(st, at)] = 0 implies that the set of Q-values solves the two-step

Bellman equation. Write down the two-step algorithm, then three steps of the

argument and then your final result:

Variant C: ∆Q(s, a) = η 1{a′=a∗(s′)}δ with δ = [r + γr′ + γ2 maxa′′ Q(s′′, a′′)−Q(s, a)].

E[∆Q(s, a)|s, a] = η
∑

r,s′,a′,r′,s′′ p(r, s
′|s, a)π(a′|s′)p(r′, s′′|s′, a′)1{a′=a∗(s′)}δ = 0⇒∑

r,s′,r′,s′′ p(r, s
′|s, a) π(a∗(s′)|s′)︸ ︷︷ ︸

1−ε=constant

p(r′, s′′|s′, a∗(s′))δ = 0⇒

∑
r,s′,r′,s′′ p(r, s

′|s, a)p(r′, s′′|s′, a∗(s′))δ = 0⇒

Q(s, a) =
∑

s′ p(s
′|s, a)

(
Ras→s′ + γ

∑
s′′ p(s

′′|s′, a∗(s′))
(
R
a∗(s′)
s′→s′′ + γ2Q(s′′, a∗(s′′))

))
number of points:/ [3]

(iv) Would the mathematical calculation also work for the other variant? The

answer (yes/no) needs to be supported by a mathematical argument or an intuitive

reason.

No, it does not work for variant A2 because a′ and a′′ in the update rule correspond

to two different policies (a′ to ε-greedy and a′′ to greedy).

number of points:/ [1]

7

4 Importance Sampling in an n-step actor-critic model: V-Trace ap-

proach (12 points). Estimated time: 70 min.

Background information, not necessary to solve the exercise: The V-Trace Actor-

Critic Method is an important part of the popular IMPALA agent. It is an off-

policy modification of an n-step actor-critic policy gradient method. In this section

we analyze aspects of this practically relevant algorithm.

Problem setting: We consider trajectories as sequences of states xt,xt+1,xt+2, ...

and actions at, at+1, at+2, ... that are generated by an actor following some policy

µ(a|x). We are interested in the V-values V (x) that correspond to another policy

π(a|x). The state at time t is denoted by xt; the state at time s is denoted by xs.

The critic is optimized by semi-gradient on a loss function Lon = (V (xs) − vs)
2

that compares, at each time point s, the V -value V (xs) in state xs with a target

vs. The actor is optimized by policy gradient.

V-trace target: We define the n-step ’V-Trace target’ for V (xs) as

vs := V (xs) +
s+n−1∑
t=s

γt−s

(
t−1∏
i=s

ci

)
δt (3)

where

δt := [rt + γV (xt+1)− V (xt)] ρt (4)

is a temporal difference and ρt := min
(
ρ̄, π(at|xt)

µ(at|xt)

)
and ci := min

(
c̄, π(ai|xi)

µ(ai|xi)

)
are

truncated importance sampling weights with truncation levels ρ̄ and c̄.

Note: To simplify the writing, we make use of the notation
∏t−1

i=s ci = 1 for s = t.

(i) We start with the on-policy case, assuming ρ̄ = c̄ = 1. Rewrite the V-

Trace target vs defined by Eq. 3 in terms of V (xs+n) and intermediate rewards

rs, rs+1, . . . rs+n.

Hint1: After the rewrite, V (xs) should disappear on the righ-hand-side of Eq. 3.

Hint2: on-policy means µ = π.

vs =
(∑s+n−1

t=s γt−srt
)

+ γnV (xs+n)

number of points:/ 3

Space for your calculations, not for answers

8

(ii) We turn to the critic and study the off-policy scenario. Hence the policy π 6= µ.

Expectation values will be denoted by Eµ if the expection is over trajectories

generated by the policy µ and Eπ if the expection is over trajectories generated

by the policy π .

For the calculation we assume ρ̄ = c̄ > maxt
π(at|xt)
µ(at|xt)

.

Given the current state xs, relate the Expectiation Eµ of V-Trace target vs from

Eq. 3 to the Expectation Eπ of V-values and, possibly, rewards.

Show the main steps of your mathematical calculation and write the final result

in the last line.

Hint: You start with Eµ[vs|xs] on the left-hand side; and end with an expectation

= Eπ[. . .] over an appropriate expression on the right-hand side.

Eµ[vs|xs] =Eµ

[
V (xs)

∣∣∣xs]+∑s+n−1
t=s γt−sEµ

[∏t
i=s

π(ai|xi)
µ(ai|xi)

(rt + γV (xt+1)− V (xt))
∣∣∣xs]

= Eπ

[
V (xs)

∣∣∣xs]+
∑s+n−1

t=s γt−sEπ

[
(rt + γV (xt+1)− V (xt))

∣∣∣xs]
Eµ[vs|xs] = Eπ

[∑n−1
k=0 γ

krs+k

∣∣∣xs]+ γnEπ

[
V (xs+n)

∣∣∣xs]
number of points:/ 4

Space for your calculations, not for answers

Exam continues on next page

9

(iii) We now turn to the actor. We consider the term

A := ρs∇w log πw(as|xs)(rs + γvs+1 − V (xs)) (5)

and study its expectation Eµ[A|xs]. We assume ρ̄ = c̄ > maxt
π(at|xt)
µ(at|xt)

.

Show that Eµ[A|xs] is equal to the expection Eπ of the policy-gradient rule of the

on-policy model, i.e., of an agent with policy π.

Show the main steps of your mathematical arguments:

(1) Eµ[A|xs] = Eas∼µ

[
π(as|xs)
µ(as|xs)

∇w log πw(as|xs)(Eµ[rs + γvs+1|as,xs]− V (xs))
∣∣∣xs]

(2) = Eas∼π

[
∇w log πw(as|xs)(Eµ[rs + γvs+1|as,xs]− V (xs))

∣∣∣xs]
(3) = Eas∼π

[
∇w log πw(as|xs)

(
Eπ

[
rs +

∑n−1
k=0 γ

k+1rs+1+k + γn+1V (xs+1+n)
∣∣∣as,xs]− V (xs)

) ∣∣∣xs]
(4) = Eπ

[
∇w log πw(as|xs)

(∑n
k=0 γ

krs+k + γn+1V (xs+n+1)− V (xs)
) ∣∣∣xs]

Line 4, is the final result. For the transitions from line 1 to 2 to 3 to 4, I used the

following identities:

(1) to (2) Absorbing π(as|xs)
µ(as|xs)

to change the outer expecation of as from µ to π.

(2) to (3) Using part ii to rewrite Eµ[vs|xs, as] as an expecation with respect to π.

(3) to (4) Combining the two expecation using the law of total expecations.

number of points:/ 4

(iv) Why are the findings in parts (ii) and (iii) important for practical applications?

1. They allow training policy π with samples generated by another policy µ.

2. They allow using replay buffer in on-policy methods (but with re-weighting the

samples).

3. The idea is similar to PPO.

number of points:/ 1

Space for your calculations, not for answers

10

	3-step SARSA (5 points). Estimated time: 20 minutes
	Policy Gradient for 1-step horizon: Contextual Bandit Problem (7 points). Estimated time 35 min
	1-step and 2-step Q-learning in the tabular setting (8 points). Estimated time: 35 min
	Importance Sampling in an n-step actor-critic model: V-Trace approach (12 points). Estimated time: 70 min.

