

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas

Assistant: L. E. Rösler

Exercise Sheet 1

Exercise 1:

Show that if a topological space M is locally Euclidean at some point $p \in M$ (i.e., p has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^n), then p has a neighborhood that is homeomorphic to the whole space \mathbb{R}^n or to an open ball in \mathbb{R}^n .

Exercise 2:

Examine which of the following spaces (endowed with the subspace topology) is locally Euclidean:

- (a) The closed interval $[0,1] \subseteq \mathbb{R}$.
- (b) The "bent line" $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy = 0\} \subseteq \mathbb{R}^2$.

Exercise 3 (The line with two origins):

Consider the set

$$X = \left\{ (x,y) \in \mathbb{R}^2 \mid y \in \{-1,1\} \right\} \subseteq \mathbb{R}^2$$

and let M be the quotient of X by the equivalence relation generated by $(x, -1) \sim (x, 1)$ for all $x \neq 0$. Show that M is locally Euclidean and second-countable, but not Hausdorff.

Exercise 4 (to be submitted by Friday, 29.09.2023, 20:00):

Consider the subset

$$V = \left\{ (x, y) \in \mathbb{R}^2 \mid (x - 1)(x - y) = 0 \right\} \subseteq \mathbb{R}^2$$

endowed with the subspace topology. Show that V is not a topological manifold.

Exercise 5 (Product manifolds):

Let M_1, \ldots, M_k be topological manifolds of dimensions n_1, \ldots, n_k , respectively, where $k \geq 2$. Show that the product space $M_1 \times \ldots \times M_k$ is a topological manifold of dimension $n_1 + \ldots + n_k$.

In particular, the *n*-torus $\mathbb{T}^n := \mathbb{S}^1 \times \ldots \times \mathbb{S}^1$ is a topological *n*-manifold.