
Prof. George Candea

School of Computer & Communication Sciences

Principles of Computer Systems

Administrivia

George Candea Principles of Computer Systems

Your POCS Team

George Candea Principles of Computer Systems

George Candea

Instructor

Katerina Argyraki

Instructor

Jiacheng Ma

TA

Can Cebeci

TA

Syllabus

George Candea Principles of Computer Systems

Syllabus and schedule
subject to change

W
ee
k

Topic Who

1 Introduction
Modules & Interfaces George

2 Naming & Indirection Katerina

3 Case study:
Memory virtualization George

4 Layering (organization of modules) Katerina

5 Case study:
Machine virtualization Ed Bugnion

6 Case study:
Internet design Katerina

7 Client/server organization George
8 Locality & Caching Sanidhya Kashyap
9 Redundancy George

10 Case study:
Transactions George

11 Case studies in HW/SW co-design Thomas Bourgeat
12 Lazy / speculative execution Butler Lampson
13 Hints for Computer System Design George & Katerina
14 Exam
4 Technical writing George

Fundamentals

Case studies

Guest lecturers

Prerequisites

• Good knowledge of

• Operating systems (e.g., via CS-323)

• Networks (e.g., via COM-407)

• Computer architecture (e.g., via CS-470)

• Databases (e.g., via CS-422)

• Read the Exokernel, GNS, and Chord papers

• if you don't "get it" then POCS might not be right for you at this time

• You cannot "just wing" POCS

George Candea Principles of Computer Systems

Take prerequisites 
very seriously

Typical week in POCS

George Candea Principles of Computer Systems

Attend lecture

<key ideas> Read papers

<tech details>

Attend recitation

<OP & discussion>

Digest papers

Review videos

Tuesday

Friday

Don't fall 
behind

Grading

• OPs (one-paragraphs) = 50%

• demonstrate that you understood the papers

• learn to identify system challenges and the techniques used to solve them

• learn to express your ideas concisely

• individual work done in class, closed book

• graded on a curve

• Exam = 50%

• in-class during the last week, closed book

• read a system description, short paper, etc.

• ... then answer individual questions similar to OPs

• graded on a curve

George Candea Principles of Computer Systems

Resources

• Moodle

• slides

• lecture recordings (best-effort)

• Ed Discussion

• Course website

• all static content

George Candea Principles of Computer Systems

Advice

• 8 credits = heavyweight course

• ~17 hours/week

• Do not take POCS if you don't have the background

• Really, this is no joke !

• Do not fall behind

• pace is fast, if you lose one week, it’s hard to recover

• Ask classmates/TAs/instructors when you don’t fully grasp something

• don’t just “let it be”, because it may come back to bite you later

• Really, do not fall behind !

George Candea Principles of Computer Systems

What does it mean to study

the principles of comp sys design?

George Candea Principles of Computer Systems

George Candea Principles of Computer Systems

ht
tp

s:
//m

ed
ia

.is
to

ck
ph

ot
o.

co
m

/p
ho

to
s/

dr
iv

er
le

ss
-c

ar
-in

te
rio

r-
w

ith
-fu

tu
ris

tic
-d

as
hb

oa
rd

-fo
r-

au
to

no
m

ou
s-

pi
ct

ur
e-

id
12

63
53

33
92

What does it mean to study principles of comp sys design ?

• What do we mean by a system ?

• What are the challenges in building and maintaining systems ?

• How do we address those challenges ?

George Candea Principles of Computer Systems

What is a Computer System ?

George Candea Principles of Computer Systems

Definition : A system is a group of
interconnected components that
exhibits an expected collective
behavior observed at the interface
with its environment.

System
Environment

Interface

Examples of Systems

George Candea Principles of Computer Systems

System Environment Interfaces

OS kernel = code hw + applications + libraries + ... syscall interface

Smartphone = hw + OS +
libraries + apps

cell towers + GPS satellites + cloud
svcs + users + ...

network protocols, touch
screen, ...

Smart home controller = hw +
OS + libs

HVAC devices + access-control devices
+ meteo station + inhabitants + ...

KNX protocol, HTTP

Amazon WS = hw + code apps + Internet + Web browsers +
credit card billing svcs + ...

x86, provisioning API, HTTP,
ISO 8585, ...

Properties of Good Systems

• Safety

• Security

• Reliability

• Performance

• Manageability

George Candea Principles of Computer Systems

Definition : A system is a group of
interconnected components that
exhibits an expected collective behavior
observed at the interface with its
environment.

Hardware
Operating system

Runtime / Libraries

Applications
Middleware

George Candea Principles of Computer Systems

Networking
Ope

ra
tin

g 
sy

ste
m

s

Databases

Programming 

languages

Computer 

architecture

" Systems Thinking "

• global all-encompassing vs. narrow focus on individual aspects

• study many prior systems to understand what made them succeed/fail

• using back-of-the-envelope calculations to quickly eliminate designs
that wouldn't work

George Candea Principles of Computer Systems

Today's lecture ...

• Sources of complexity:

• lots of code, emergent behaviors, many interconnections, evolution, trade-offs

• Use modularity to

• encapsulate elements into components & subsystems => fewer visible elements

• control interactions and propagation of behaviors => fewer interconnections

• Use abstraction to

• make emergent behavior predictable => less irregularity & fewer exceptions

• Later on...

• patterns of using modularity and abstraction (layering, naming, client/server, etc.)

George Candea Principles of Computer Systems

5 Challenges in Comp Sys Design

George Candea Principles of Computer Systems

#1 — Software/firmware 
has lots of possible behaviors

George Candea Principles of Computer Systems

George Candea Principles of Computer Systems

autoShift (int rpm)

 if (rpm > 1000)

 gear = gear+1

 rpm = 0.5*rpm

 if (rpm < 700)

 gear=0

 return

gear = gear+1
rpm = 0.5*rpm

rpm > 1000

TrueFalse

return gear=0
return

TrueFalse

return gear=0
return

TrueFalse

rpm=1200

rpm < 700rpm < 700

George Candea Principles of Computer Systems

autoShift (int rpm)

 if (rpm > 1000)

 gear = gear+1

 rpm = 0.5*rpm

 if (rpm < 700)

 gear=0

 return

gear = gear+1
rpm = 0.5*rpm

rpm > 1000

TrueFalse

return gear=0
return

TrueFalse

return gear=0
return

TrueFalse

rpm < 700rpm < 700

George Candea Principles of Computer Systems

autoShift (int rpm)

 if (rpm > 1000)

 gear = gear+1

 rpm = 0.5*rpm

 if (rpm < 700)

 gear=0

 return

gear = gear+1
rpm = 0.5*rpm

rpm > 1000

TrueFalse

return gear=0
return

TrueFalse

return gear=0
return

TrueFalse

rpm < 700 rpm < 700

George Candea Principles of Computer Systems

gear = gear+1
rpm = 0.5*rpm

autoShift (int rpm)

 if (rpm > 1000)

 gear = gear+1

 rpm = 0.5*rpm

 if (rpm < 700)

 gear=0

 return

rpm > 1000

TrueFalse

return gear=0
return

TrueFalse

return gear=0
return

TrueFalse

rpm ∈ {0,350,944,1200,1800}

rpm < 700rpm < 700

George Candea Principles of Computer Systems

paths ≃ 2 program size

gear = gear+1
rpm = 0.5*rpm

autoShift (int rpm)

 if (rpm > 1000)

 gear = gear+1

 rpm = 0.5*rpm

 if (rpm < 700)

 gear=0

 return

rpm > 1000

TrueFalse

return gear=0
return

TrueFalse

return gear=0
return

TrueFalse

rpm < 700rpm < 700

George Candea Principles of Computer Systems

paths ≃ 2 program size

>5,000,000 lines of code1 (LOC) ⇒ ~2500,000 paths

1 Black Duck Software, Inc. Mozilla Firefox Code Analysis, http://www.ohloh.net/p/firefox/analyses/latest

Can we test 2 500,000 paths?

Some Code Sizes (in LOC)

• Boeing 787 avionics + online support ~several million LOC

• Chrome browser ~several million LOC

• entry-level electric vehicle (Chevy Volt) ~10 million LOC

• Android operating system ~a few tens of millions LOC

• the Large Hadron Collider ~50 million LOC

• all car software in a high-end car ~100 million LOC

• all Google services combined ~2 billion LOC

George Candea Principles of Computer Systems

#2 — Combining many components
leads to unforeseen interactions

George Candea Principles of Computer Systems

Many Components

George Candea Principles of Computer Systems

A
nd

ro
id

 s
ta

ck

https://developer.android.com/guide/platform

N
etfilter FW

/N
AT

Emergent Behaviors

• Functional

• ant colonies, blockchain, deadlock, livelock, ...

• Non-functional

• reliability, security,...

George Candea Principles of Computer Systems

Behaviors that are not evident in the components, 
but appear when the components are combined.

Conway's Game of Life

Emergent Behaviors in Computer Systems

• Thrashing

• Unwanted synchronization

• Unwanted oscillation or periodicity

• Livelock/Deadlock

• Phase change

• ...

George Candea Principles of Computer Systems

For more insights, see 
J. Mogul, Emergent (Mis) behavior vs. Complex Software Systems,
ACM SIGOPS Operating Systems Review, October 2006

#3 — Propagation of Effects

George Candea Principles of Computer Systems

Many Interconnections -> Propagation of Effects

George Candea Principles of Computer Systems

The transitivity of component interconnections causes a local
phenomenon to propagate to large parts of the system.

#4 — System evolution makes these
challenges even harder*

George Candea Principles of Computer Systems

* not always... e.g., redesign and refactoring

System Evolution ⇒ Complexity

George Candea Principles of Computer Systems

System 
lifetime

Complexity

Legacy Systems = Complex Systems

• Evolution

• is a process of satisfying new requirements

• successful systems evolve fast

George Candea Principles of Computer Systems

Android codebase size 
(in millions of lines, over its first 4 years)

5.0

2.5

0

2009 2010 2011 2012

Quest for Efficiency ⇒ Complexity

George Candea Principles of Computer Systems

Desired efficiency

Complexity

Buffer cacheWriteback buffer cache

fsync()

Irregularity and Exceptions ⇒ Complexity

George Candea Principles of Computer Systems

Im
ag

es
 fr

om
 ht

tp:
//d

re
am

sti
me

.co
m

an
d h

ttp
://w

ww
.w

all
pa

pe
rs-

ba
ck

gr
ou

nd
s.n

et

http://www.wallpapers-backgrounds.net/

System specifications

• IEEE 802.11 standard for wireless networking

• published in 1997 → 45 pages

• 1999 revision → 90 pages

• 2007 revision → 1,250 pages (incl. amendments)

• 2012 revision → 2,793 pages (incl. amendments)

• HTTP protocol

• RFC 1945 (1996) HTTP/1.0 → 60 pages

• RFC 2068 (1997) HTTP/1.1 → 160 pages

• RFC 2616 (1999) HTTP/1.1 v.2 → 176 pages long

George Candea Principles of Computer Systems

Quantify irregularity

• "Kolmogorov complexity"

• computation resources needed to specify an object

• minimal length of a description of the object

• K(object) >= |object| => complex 
K(object) << |object| => simple

George Candea Principles of Computer Systems

|ABDAGHDBBCAD...| = 106+1

|AAAAAAA ... AAAAB| = 106+1
K(AAAAAAA ... AAAAB) = 
 |“1 million As followed by 1 B”|
⇒ simple

K(ABDAGHDBBCAD...) = 106+1
⇒ complex

#5 — System design is subservient
to users, workloads, and technology

George Candea Principles of Computer Systems

Inescapable Trade-Offs

George Candea Principles of Computer Systems

Designing a system consists of trading off properties against
each other so as to maximize the system’s overall utility.

Quality [%] Availability [%] Security [EAL]

Max. Latency [sec] Min. Throughput [ops/sec] TCO [$/year]

0 100 100980 0 74321 5 6

1 11

0 1180.1

1

0 1000 2000

1

0 1M 3M

1

Figure 1. Normalized utility functions for an example online banking application.

Other possible quantifications of security include a sim-
ple set containment approach, in which higher levels of se-
curity incorporate a larger set of security precautions in-
cluded in the system. Another approach, depending on
the application, is to quantify security according to cryp-
tographic key sizes [17]. [20] proposes a way to evaluate
and quantify the security of storage systems.
Performance is usually viewed as an expression of the

throughput and latency of access. For a general banking ser-
vice we may want to consider both read and update through-
put/latency and perhaps even differentiate based on the par-
ticular data set being accessed. However, in this example
we will only look at a general measure of overall through-
put and latency. The performance axes have a continuous
value set; throughput is measured in operations/second, and
latency in seconds.
Total cost of ownership (TCO) includes hard-

ware/software costs, training, maintenance, technical
support, network connectivity, etc. In this example we use
the per-year amortized cost, with the TCO axis quantified
in dollars/year.
When choosing values and metrics for points on any

of the design axes, system designers will generally choose
units specific to the applications that will use the state repos-
itory they are building.

4. The Requirements Specification

The requirements specification is a collection of utility
functions, one for each axis of the design space, along with
a formula for combining individual utilities into an over-
all utility. It is acceptable for points on the axes to not be
quantified with absolute metrics; what really matters is that
values can be compared to each other. The units used for
measuring utility need to be uniform across all five axes, to

be able to correctly compare utilities throughout the design
space.
Utility functions can be specified at various levels of de-

tail, from qualitative graphs to precise quantitative func-
tions. The right level of detail is generally obtained at the
end of an iterative process, in which utility functions are
successively refined. The general approach we propose for
building these utility functions is to choose salient points
and then qualitatively interpolate between them.
In this example, the formula for combining utilities is

simply a multiplication.
Quality: Certain applications, such as large search en-

gines, routinely reduce completeness of their answers [5],
that, however, would be unacceptable in the case of a bank-
ing application, where consistency between the reported
balances/payments/etc. with the true bank account is cru-
cial. Therefore, the only salient point in this case is the
100% quality point, and Figure 1 shows one of the simplest
utility curves possible: a step function. Any quality below
100% is useless, hence utility 0; once the quality is 100%,
it perfectly meets the requirement of the application.
Availability of the service is the percentage of requests

that are satisfactorily fulfilled by the bank’s web site. Ac-
cording to various surveys, the true availability of the best-
of-breed web sites today is on the order of 98%, so we
choose that as one salient point. For competitive reasons,
we would expect the online bank to find a system with
poorer availability than 98% to be totally useless. The util-
ity of availability rapidly increases until it reaches the order
of 3 nines, after which any further improvements in avail-
ability become rather worthless, as we can count on users
to retry a failed request. This yields a second salient point
at 99.9%. We interpolate and show the resulting curve in
Figure 1.
Security of the service is defined in terms of how useful

the different assurance levels would be, so it is is natural to

3

Incommensurate Scaling — chasing the bottleneck

George Candea Principles of Computer Systems

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

Incommensurate Scaling — chasing the bottleneck

George Candea Principles of Computer Systems

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

Incommensurate Scaling — chasing the bottleneck

George Candea Principles of Computer Systems

As a system increases in size or speed, different parts scale
unequally, causing the system as a whole to stop working.

• Reason:

• Scalability of each component is

described by a function

• The order of these functions is not the

same for each component => as system
grows, components scale
disproportionally 
to each other

Challenges of going from components to systems

• # of behaviors of software ~ 2code size

• many components => emergent behaviors => unpredictable

• many interconnections => propagation of effects => unpredictable

• system evolution introduces exceptions and irregularity

• system is the result of trade-offs

• driven by its users, workloads, and technology

• incommensurate scaling

George Candea Principles of Computer Systems

George Candea Principles of Computer Systems

ht
tp

s:
//w

w
w

.e
xp

er
tre

vi
ew

s.
co

.u
k/

ki
tc

he
n/

14
15

54
7/

be
st

-c
of

fe
e-

cu
p

Use Modularity to Control
Interactions and Propagation

George Candea Principles of Computer Systems

Definition

• We have limited capacity to remember and disentangle details

• cannot reason about many things at a time => need to compartmentalize

• Modularity = put things in "boxes" (components or subsystems) and treat as a unit

• Module

• distinct, self-contained unit that provides a specific service or function

• can be easily plugged / unplugged into different systems

• often encapsulates its own state

• Examples

• classes in OOP, folders in file systems, separation of src code into multiple src files, ...

George Candea Principles of Computer Systems

George Candea Principles of Computer Systems

George Candea Principles of Computer Systems

MAIN0001* PROGRAM TO SOLVE THE QUADRATIC EQUATION
MAIN0002 READ 10,A,B,C $
MAIN0003 DISC = B*B-4*A*C $
MAIN0004 IF (DISC) NEGA,ZERO,POSI $
MAIN0005 NEGA R = 0.0 - 0.5 * B/A $
MAIN0006 AI = 0.5 * SQRTF(0.0-DISC)/A $
MAIN0007 PRINT 11,R,AI $
MAIN0008 GO TO FINISH $
MAIN0009 ZERO R = 0.0 - 0.5 * B/A $
MAIN0010 PRINT 21,R $
MAIN0011 GO TO FINISH $
MAIN0012 POSI SD = SQRTF(DISC) $
MAIN0013 R1 = 0.5*(SD-B)/A $
MAIN0014 R2 = 0.5*(0.0-(B+SD))/A $
MAIN0015 PRINT 31,R2,R1 $
MAIN0016 FINISH STOP $
MAIN0017 10 FORMAT(3F12.5) $
MAIN0018 11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
MAIN0019 F12.5, 2H I) $
MAIN0020 21 FORMAT(15H ONE REAL ROOT:, F12.5) $
MAIN0021 31 FORMAT(16H TWO REAL ROOTS:, F12.5, 5H AND , F12.5) $
MAIN0022 END $

George Candea Principles of Computer Systems

MAIN0001* PROGRAM TO SOLVE THE QUADRATIC EQUATION
MAIN0002 READ 10,A,B,C $
MAIN0003 DISC = B*B-4*A*C $
MAIN0004 IF (DISC) NEGA,ZERO,POSI $
MAIN0005 NEGA R = 0.0 - 0.5 * B/A $
MAIN0006 AI = 0.5 * SQRTF(0.0-DISC)/A $
MAIN0007 PRINT 11,R,AI $
MAIN0008 GO TO FINISH $
MAIN0009 ZERO R = 0.0 - 0.5 * B/A $
MAIN0010 PRINT 21,R $
MAIN0011 GO TO FINISH $
MAIN0012 POSI SD = SQRTF(DISC) $
MAIN0013 R1 = 0.5*(SD-B)/A $
MAIN0014 R2 = 0.5*(0.0-(B+SD))/A $
MAIN0015 PRINT 31,R2,R1 $
MAIN0016 FINISH STOP $
MAIN0017 10 FORMAT(3F12.5) $
MAIN0018 11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
MAIN0019 F12.5, 2H I) $
MAIN0020 21 FORMAT(15H ONE REAL ROOT:, F12.5) $
MAIN0021 31 FORMAT(16H TWO REAL ROOTS:, F12.5, 5H AND , F12.5) $
MAIN0022 END $

George Candea Principles of Computer Systems

MAIN0001* PROGRAM TO SOLVE THE QUADRATIC EQUATION
MAIN0002 READ 10,A,B,C $
MAIN0003 DISC = B*B-4*A*C $
MAIN0004 IF (DISC) NEGA,ZERO,POSI $
MAIN0005 NEGA R = 0.0 - 0.5 * B/A $
MAIN0006 AI = 0.5 * SQRTF(0.0-DISC)/A $
MAIN0007 PRINT 11,R,AI $
MAIN0008 GO TO FINISH $
MAIN0009 ZERO R = 0.0 - 0.5 * B/A $
MAIN0010 PRINT 21,R $
MAIN0011 GO TO FINISH $
MAIN0012 POSI SD = SQRTF(DISC) $
MAIN0013 R1 = 0.5*(SD-B)/A $
MAIN0014 R2 = 0.5*(0.0-(B+SD))/A $
MAIN0015 PRINT 31,R2,R1 $
MAIN0016 FINISH STOP $
MAIN0017 10 FORMAT(3F12.5) $
MAIN0018 11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
MAIN0019 F12.5, 2H I) $
MAIN0020 21 FORMAT(15H ONE REAL ROOT:, F12.5) $
MAIN0021 31 FORMAT(16H TWO REAL ROOTS:, F12.5, 5H AND , F12.5) $
MAIN0022 END $

George Candea Principles of Computer Systems

MAIN0001* PROGRAM TO SOLVE THE QUADRATIC EQUATION
MAIN0002 READ 10,A,B,C $
MAIN0003 DISC = B*B-4*A*C $
MAIN0004 IF (DISC) NEGA,ZERO,POSI $
MAIN0005 NEGA R = 0.0 - 0.5 * B/A $
MAIN0006 AI = 0.5 * SQRTF(0.0-DISC)/A $
MAIN0007 PRINT 11,R,AI $
MAIN0008 GO TO FINISH $
MAIN0009 ZERO R = 0.0 - 0.5 * B/A $
MAIN0010 PRINT 21,R $
MAIN0011 GO TO FINISH $
MAIN0012 POSI SD = SQRTF(DISC) $
MAIN0013 R1 = 0.5*(SD-B)/A $
MAIN0014 R2 = 0.5*(0.0-(B+SD))/A $
MAIN0015 PRINT 31,R2,R1 $
MAIN0016 FINISH STOP $
MAIN0017 10 FORMAT(3F12.5) $
MAIN0018 11 FORMAT(19H TWO COMPLEX ROOTS:, F12.5,14H PLUS OR MINUS,
MAIN0019 F12.5, 2H I) $
MAIN0020 21 FORMAT(15H ONE REAL ROOT:, F12.5) $
MAIN0021 31 FORMAT(16H TWO REAL ROOTS:, F12.5, 5H AND , F12.5) $
MAIN0022 END $

Edsger Dijkstra

Structured Programming

George Candea Principles of Computer Systems

The competent programmer is fully aware of
the strictly limited size of his own skull and
therefore approaches the programming task
in full humility.

Structured Programming

George Candea Principles of Computer Systems

Structured Programming

• Three basic constructs

• single-entry / single-exit control 

constructs

• sequence, selection, iteration

• Structured program

• ordered, disciplined, doesn't jump 

around unpredictably

• can read easily and reason about ⇒ 

higher quality

George Candea Principles of Computer Systems

statement

statement

statementSe
qu

en
ce

 bl
oc

k

blockblock

conditionT F

Se
lec

tio
n b

loc
k

block

condition
T

F

Ite
ra

tio
n b

loc
k

Modularity Through Virtualization

• Containers 

• Docker, LXC, Podman, ...

• Zones (Solaris)

• Virtual private servers (OpenVZ)

• Partitions, virtual environments

• Virtual kernels (DragonFly BSD)

• Jails (FreeBSD jail, chroot)

George Candea Principles of Computer Systems

• Virtual machines

What is Modularity ?

• Isolate behavior into “boxes”

• Controlled entry/exit points

• replace components without affecting rest of system

• Criterion

• Interdependence within modules + independence across modules

George Candea Principles of Computer Systems

For more insights, see 
C. Y. Baldwin and K. B. Clark, Design Rules: The power of modularity,
The MIT Press, 2000

George Candea Principles of Computer Systems

Use Abstraction to Simplify and
Regularize Behavior

George Candea Principles of Computer Systems

Modularity

George Candea Principles of Computer Systems

Modularity

George Candea Principles of Computer Systems

Examples of Abstractions in Operating Systems

• Virtual address space

• Process

• Pipe

• Filesystem

• ...

George Candea Principles of Computer Systems

Examples of Abstractions in Operating Systems

• Virtual address space

• Process

• Pipe

• Filesystem

• ...

George Candea Principles of Computer Systems

19.09.22, 18:02

Page 1 of 2https://upload.wikimedia.org/wikipedia/commons/3/32/Virtual_address_space_and_physical_address_space_relationship.svg

Virtual address space Physical address space

0x00000000

0x00010000

0x10000000

0x7fffffff

0x00000000

0x00ffffff

page belonging to process

page not belonging to process

text

data

stack

Abstraction = Interface + Modularity

• Specifies “what” a component/subsystem does

• Together with modularity, 
it separates “what” from “how” 
=> abstraction

George Candea Principles of Computer Systems

HOW

Abstraction = Interface + Modularity

• Specifies “what” a component/subsystem does

• Together with modularity, 
it separates “what” from “how” 
=> abstraction

George Candea Principles of Computer Systems

WHAT

Examples of Abstractions in Programming Languages

• Routines

• function, procedure, thread, etc.

• Lambda functions

• a.k.a. anonymous functions

• Abstract data types

• Objects in OOP

George Candea Principles of Computer Systems

Examples of Abstractions in Programming Languages

• Routines

• function, procedure, thread, etc.

• Lambda functions

• a.k.a. anonymous functions

• Abstract data types

• Objects in OOP

George Candea Principles of Computer Systems

Examples of Abstractions in Programming Languages

• Routines

• function, procedure, thread, etc.

• Lambda functions

• a.k.a. anonymous functions

• Abstract data types

• Objects in OOP

George Candea Principles of Computer Systems

Examples of Abstractions in Programming Languages

• Routines

• function, procedure, thread, etc.

• Lambda functions

• a.k.a. anonymous functions

• Abstract data types

• Objects in OOP

George Candea Principles of Computer Systems

How To Modularize & Abstract?

• Abstraction + modularity often considered the same (but is not)

• Modularize along natural (effective) boundaries

• Few interactions between modules

• Few propagations of effects

• Must be able to interact with module without knowing internal details

• Beware of ability to truly encapsulate

• E.g., use of hw protection for address spaces vs. objects in C++

George Candea Principles of Computer Systems

Abstraction = Module + Interface

George Candea Principles of Computer Systems

Since:

1.4

bind

public void bind(SocketAddress bindpoint)
 throws IOException

Binds the socket to a local address.

If the address is null, then the system will pick up an ephemeral port and a valid local address to bind the socket.

Parameters:

bindpoint - the SocketAddress to bind to

Throws:

IOException - if the bind operation fails, or if the socket is already bound.

IllegalArgumentException - if bindpoint is a SocketAddress subclass not supported by this socket

Since:

1.4

See Also:

isBound()

getInetAddress

public InetAddress getInetAddress()

Returns the address to which the socket is connected.

If the socket was connected prior to being closed, then this method will continue to return the connected address
after the socket is closed.

Returns:

the remote IP address to which this socket is connected, or null if the socket is not connected.

getLocalAddress

public InetAddress getLocalAddress()

Gets the local address to which the socket is bound.

Returns:

the local address to which the socket is bound, or the wildcard address if the socket is closed or not bound
yet.

Since:

JDK1.1

getPort

public int getPort()

IllegalArgumentException - if the port parameter is outside the specified range of valid port values, which
is between 0 and 65535, inclusive.

NullPointerException - if host is null.

See Also:

setSocketImplFactory(java.net.SocketImplFactory), SocketImpl,
SocketImplFactory.createSocketImpl(),
SecurityManager.checkConnect(java.lang.String, int)

Method Detail

connect

public void connect(SocketAddress endpoint)
 throws IOException

Connects this socket to the server.

Parameters:

endpoint - the SocketAddress

Throws:

IOException - if an error occurs during the connection

IllegalBlockingModeException - if this socket has an associated channel, and the channel is in non-
blocking mode

IllegalArgumentException - if endpoint is null or is a SocketAddress subclass not supported by this
socket

Since:

1.4

connect

public void connect(SocketAddress endpoint,
 int timeout)
 throws IOException

Connects this socket to the server with a specified timeout value. A timeout of zero is interpreted as an infinite
timeout. The connection will then block until established or an error occurs.

Parameters:

endpoint - the SocketAddress

timeout - the timeout value to be used in milliseconds.

Throws:

IOException - if an error occurs during the connection

SocketTimeoutException - if timeout expires before connecting

IllegalBlockingModeException - if this socket has an associated channel, and the channel is in non-
blocking mode

IllegalArgumentException - if endpoint is null or is a SocketAddress subclass not supported by this
socket

Interface = contract between 
 a module and the rest

Implementation "simulates" the Abstraction

George Candea Principles of Computer Systems

Si Sj

Qk Ql

Abstract state machine

Implementation state machine

Abstraction 
function

Int
er

fac
e

Mo
du

le

Properties of Abstractions

George Candea Principles of Computer Systems

Well known properties of good abstractions

• Information hiding

• Completeness

• Consistency

• Separation of concerns

• Generality & Reusability

• Extensibility

• Single responsibility & Orthogonality

• Composability

• Efficiency

George Candea Principles of Computer Systems

Leaky Abstractions

George Candea Principles of Computer Systems

All non-trivial abstractions,
to some degree, are leaky.

(Joel Spolsky)

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

The Scalable Commutativity Rule

George Candea Principles of Computer Systems

T. Clements et al, The Scalable Commutativity Rule: Designing
Scalable Software for Multicore Processors, SOSP 2013

What is scalability ?

George Candea Principles of Computer Systems

Ability to perform
additional work given
greater hardware
resources

Good scalability =>

ability grows linearly 
with hw resources

scalability 
bottleneck

ht
tp

s:
//h

pc
-w

ik
i.i

nf
o/

m
ed

ia
w

ik
i/h

pc
_i

m
ag

es
/7

/7
1/

C
g_

sp
ee

du
p.

pn
g

George Candea Principles of Computer Systems

creat("x") creat("y") creat("z")

stdin stdout stderr

Interface scalability example

George Candea Principles of Computer Systems

creat("x") creat("y") creat("z")

stdin stdout stderr

Interface scalability example

creat("x") creat("y") creat("z")

stdin stdout stderr

Interface scalability example

George Candea Principles of Computer Systems

creat("x") creat("y") creat("z")

stdin stdout stderr

Interface scalability example

creat("x") creat("y") creat("z")

stdin stdout stderr

Interface scalability example

SC Rule: Whenever interface operations commute,  
 they can be implemented in a way that scales.

Intuition behind rule (in the multicore context)

George Candea Principles of Computer Systems

✗ ✗
✗

Core X

C
or

e
Y

W R -
W

R

-

✓
✓

✓
-

✓

✓

What scales on today's multicores?

Two or more operations
are scalable if they are
conflict-free.

Operations commute 
⇒ results independent of order 
⇒ communication is unnecessary 
⇒ without communication, no conflicts

1.5k

2.5k

3.5k

0

500

1k

2k

3k

1 10 20 30 40 50 60 70 80

Cy
cl

es
 to

 re
ad

1 writer + N readers

Cost of a contended cache line

Examples

George Candea Principles of Computer Systems

Commutes

Scalable
implementation

exists

P1: creat
P1: creat ✗

P1: creat("/tmp/x")
P2: creat("/etc/y") ✓ ✓ (Linux)

P1: creat("/x")
P2: creat("/y") ✓ ✓

P1: creat("x", O_EXCL)
P2: creat("x", O_EXCL)

Same CWD ✗
Different CWD ✓ ✓

Example of using the rule

 • Lowest FD versus any FD
 • stat versus xstat
 • Unordered sockets
 • Delayed munmap
 • fork+exec versus posix_spawn

Refining POSIX with the rule
Commutativity Rule=>
improve POSIX scalability

Scalable Commutativity Rule

George Candea Principles of Computer Systems

Whenever interface operations commute,  
they can be implemented in a way that scales.

Recap

• Fundamental sources of complexity:

• many components + many interconnections + irregularity & exceptions

• Use modularity to

• encapsulate elements into components & subsystems => fewer visible elements

• control interactions and propagation of behaviors => fewer interconnections

• Use abstraction to

• make emergent behavior predictable => less irregularity & fewer exceptions

• Later on...

• patterns of using modularity and abstraction (layering, naming, client/server, ...)

George Candea Principles of Computer Systems

George Candea Principles of Computer Systems

Exokernel: An Operating System Architecture for
Application-Level Resource Management

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr.
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139, U.S.A
engler, kaashoek, james @lcs.mit.edu

Traditional operating systems limit the performance, flexibility, and
functionality of applications by fixing the interface and implemen-
tation of operating system abstractions such as interprocess com-
munication and virtual memory. The exokernel operating system
architecture addresses this problem by providing application-level
management of physical resources. In the exokernel architecture, a
small kernel securely exports all hardware resources through a low-
level interface to untrusted library operating systems. Library op-
erating systems use this interface to implement system objects and
policies. This separation of resource protection from management
allows application-specific customization of traditional operating
system abstractions by extending, specializing, or even replacing
libraries.

We have implemented a prototype exokernel operating system.
Measurements show that most primitive kernel operations (such
as exception handling and protected control transfer) are ten to 100
times faster than inUltrix, amaturemonolithic UNIX operating sys-
tem. In addition, we demonstrate that an exokernel allows applica-
tions to control machineresources inways not possible in traditional
operating systems. For instance, virtual memory and interprocess
communication abstractions are implemented entirely within an
application-level library. Measurements showthat application-level
virtual memory and interprocess communication primitives are five
to 40 times faster than Ultrix’s kernel primitives. Compared to
state-of-the-art implementations from the literature, the prototype
exokernel system is at least five times faster on operations such as
exception dispatching and interprocess communication.

Operating systems define the interface between applications and
physical resources. Unfortunately, this interface can significantly
limit the performance and implementation freedom of applications.
Traditionally, operating systems hide information about machine
resources behind high-level abstractions such as processes, files,
address spaces and interprocess communication. These abstrac-
tions define a virtual machine on which applications execute; their
implementation cannot be replaced or modified by untrusted appli-
cations. Hardcoding the implementations of these abstractions is

This research was supported in part by the Advanced Research Projects Agency under
contract N00014-94-1-0985 and by a NSF National Young Investigator Award.

Copyright c 1995 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that new copies bear this notice and the full citation on the
first page. Copyrights for componentsof thisWORK owned by others than ACMmust
be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request Permissions from Publications Dept,
ACM Inc., Fax +1 (212) 869-0481,or permissions@acm.org .

inappropriate for three main reasons: it denies applications the ad-
vantages of domain-specific optimizations, it discourages changes
to the implementations of existing abstractions, and it restricts the
flexibility of application builders, since new abstractions can only
be added by awkward emulation on top of existing ones (if they can
be added at all).

We believe these problems can be solved through application-
level (i.e., untrusted) resource management. To this end, we have
designed a new operating system architecture, exokernel, in which
traditional operating system abstractions, such as virtual memory
(VM) and interprocess communication (IPC), are implemented en-
tirely at application level by untrusted software. In this architecture,
a minimal kernel—which we call an exokernel—securely multi-
plexes available hardware resources. Library operating systems,
working above the exokernel interface, implement higher-level ab-
stractions. Application writers select libraries or implement their
own. New implementations of library operating systems are incor-
porated by simply relinking application executables.

Substantial evidence exists that applications can benefit greatly
from having more control over how machine resources are used
to implement higher-level abstractions. Appel and Li [5] reported
that the high cost of general-purpose virtual memory primitives
reduces the performance of persistent stores,garbage collectors,and
distributed shared memory systems. Cao et al. [10] reported that
application-level control over file caching can reduce application
running time by 45%. Harty and Cheriton [26] and Krueger et
al. [30] showed how application-specific virtual memory policies
can increase application performance. Stonebraker [47] argued
that inappropriate file-system implementation decisions can have a
dramatic impact on the performance of databases. Thekkath and
Levy [50] demonstrated that exceptions can be made an order of
magnitude faster by deferring signal handling to applications.

To provide applications control over machine resources, an ex-
okernel defines a low-level interface. The exokernel architecture is
founded on and motivated by a single, simple, and old observation:
the lower the level of a primitive, the more efficiently it can be
implemented, and the more latitude it grants to implementors of
higher-level abstractions.

To provide an interface that is as low-level as possible (ideally,
just the hardware interface), an exokernel designer has a single
overriding goal: to separate protection from management. For
instance, an exokernel should protect framebuffers without under-
standing windowing systems and disks without understanding file
systems. One approach is to give each application its own virtual
machine [17]. As we discuss in Section 8, virtual machines can
have severe performance penalties. Therefore, an exokernel uses a
different approach: it exports hardware resources rather than emu-
lating them, which allows an efficient and simple implementation.
An exokernel employs three techniques to export resources securely.
First, by using secure bindings, applications can securely bind to
machine resources and handle events. Second, by using visible re-

