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Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 1 — Solutions

Exercise 1: Show that if a topological space M is locally Euclidean at some point p € M
(i.e., p has a neighborhood that is homeomorphic to an open subset of R™), then p has a
neighborhood that is homeomorphic to the whole space R™ or to an open ball in R".

Solution: We know that there is an open neighborhood U of p and a homeomorphism
¢ from U to an open subset ¢(U) of R™. We can find a ball B(p(p),r) C ¢(U) C R"™ for
some r > 0. Consider the map ¥: B(p(p),r) — R™ given by

v —9(p)
Sy P

One can easily verify that v is a homeomorphism with inverse

—10,N _ Y

Set U" :== ¢ 1 (B(¢(p),r)) € M and observe that U’ is a neighborhood of p in M. Then
the map
0:=voyply U —R"

is a homeomorphism as both 1 and ¢ are.

Exercise 2: Examine which of the following spaces (endowed with the subspace topology)
is locally Euclidean:

(a) The closed interval [0, 1] C R.
(b) The “bent line” {(z,y) € R* |z >0, y >0, zy =0} C R2
Solution:

(a) The interval [0, 1] is not locally Euclidean. Suppose by contradiction that it is locally
Euclidean. By Ezercise 1, there is a neighborhood U C [0, 1] of 0 which is homeomorphic
to R™ for some n > 1. Denote by ¢: U — R™ a homeomorphism and note that U is
connected, and thus of the form U = [0,¢) for some ¢ > 0. But then U \ {0} = (0,¢)
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is homeomorphic to R™ \ {¢(0)}, and since (0, ¢) is still connected, we infer that n > 1
(R minus a point has two connected components). Now there are two ways to conclude:
First, note that (0,e) and R™ \ {¢(0)} are topological manifolds of dimension 1 and n,
respectively, and since the dimension of a topological manifold is a topological invariant,
we obtain n = 1, a contradiction. Second, if z € (0,¢), then (0,¢)\{z} is homeomorphic to
R™\{p(0), p(z)}; asn > 1, the latter is connected, while the former is not, a contradiction.

(b) The “bent line”
L={(z,y) eR*|2>0, y>0, zy =0}

is locally Euclidean. Indeed, denote by ¢: R? — R? the counterclockwise rotation around
the origin by 45°. As this is a homeomorphism, we obtain that L = ¢(L). But now note
that ¢(L) coincides with the graph of the absolute value function |e|: R — R. Thus, we
obtain L = o(L) = R.

Exercise 3: Consider the set
X={(r,y) eR*|ye{-1,1}} CR?

and let M be the quotient of X by the equivalence relation generated by (z, —1) ~ (z,1)
for all x # 0. Show that M is locally Euclidean and second-countable, but not Hausdorff.

Solution: Denote by 7: X — M the quotient map (z,y) — [(z,y)]. The two “origins”
are the equivalence classes of the points (0,y) € X for y = £1; these classes have just
one element each and we denote them by 0, = [(0,y)] = {(0,y)} € M. In contrast,
the equivalence class of any other point (z,y) € X with x # 0 is the two-point set
T =|[(z,y)] = {(z,1), (z,—1)} € M. Therefore, M is the set of equivalence classes

M = X/ ~={0,} U{0_1} U {Z}aro.

The space M is locally Euclidean of dimension 1 because it is the union of two open
sets
R, = {[(z,y)] € M|z € R} (for y=+£1),

each of which is homeomorphic to R via the map
oy R = R,
z = [(z,y)].
To see that the sets R, are open in the quotient topology, note that

(R, =X\ {(0,—y)},

which is open in X.

Moreover, M is second-countable because it is the union of two second-countable open
subsets, namely, the sets R, = R (for y = £1).

Finally, M is not Hausdorff: let U_; be any open set containing 0_; and let U; be any
open set containing 0;. For y € {—1,1}, as 7 !(U,) is an open subset of X containing
(0,y), it contains a set of the form V,, = (—¢,,¢,) x {y} for some £, > 0. Now let x be
a real number such that 0 < x < min{e_y,&;}. Then [(z,—1)] = [(x,1)] is contained in
both U_; and U;. Hence, 0_; and 0, cannot be separated by disjoint open neighborhoods.
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Exercise 4: Consider the subset

V={(z,y) eR*| (z ~1)(z —y) =0} CR?
endowed with the subspace topology. Show that V' is not a topological manifold.
Solution: The subset V' C R? and a disc with small radius centered at the point (1,1) €

R? (which is the point of intersection of the lines y = z and x = 1) have been plotted
below.
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Since V is a subspace of R?, it is Hausdorff and second-countable. By considering
any point p € V' \ {(1,1)}, we conclude that if V' were a topological manifold, then it
would necessarily have dimension 1. Assume now by contradiction that V' is a topological
I-manifold. Then there exists an open neighborhood W of (1, 1) which is homeomorphic
to an open subset GG of R; denote by ¢ this homeomorphism. For sufficiently small ¢ > 0,
the set U := B((1,1),e) "W (the red disc above) is an open neighborhood of (1,1) in W,
which is connected. Hence, its homeomorphic image I := ¢(U) in G C R is connected as
well, and thus / C R is an open interval. Observe now that U\ {(1, 1)} has four connected
components, whereas I \ {¢(1,1)} has only two connected components, a contradiction.
In conclusion, V' is not a topological manifold.

Exercise 5: Let My, ..., M} be topological manifolds of dimensions nq,...,n, respec-
tively, where k > 2. Show that the product space M; X ... x M} is a topological manifold
of dimension n; + ...+ ny.

In particular, the n-torus T" := S! x ... x St is a topological n-manifold.

Solution: Any finite product of Hausdorff spaces is also Hausdorff: two distinct points
of the product differ at some coordinate, where we can separate them by two disjoint
neighborhoods. Moreover, if for each 1 < i < k we denote by B; a countable basis for the
topology of M;, then

Bi={Bix--xB,|VI<i<k: B €B}

is a countable basis for the topology of the product M; x --- x My. Finally, given any
point P = (p1,...,px) € My X -+ X My, by Ezercise 1 we know that for every 1 <i <k
there exists an open neighborhood U; C M; of p; such that U; = R™. Therefore, U =
Uy X -+- x Uy is an open neighborhood of P such that U = R™*-*+%_ In conclusion,
My x - -+ x My is a topological manifold of dimension nq + ... + n.



