
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2023
Gastpar & Urbanke September 26, 2023

Problem Set 2 (Graded) —Due Tuesday, October 10, before class starts
For the Exercise Sessions on September 26 and Oct 3

Last name First name SCIPER Nr Points

Problem 1: Axiomatic definition of entropy

Let (p1, p2, . . . , pm) be such that pi ≥ 0 for i = 1, . . . ,m and
∑

i pi = 1 . Let

H(p1, . . . , pm) = −
∑
i

pi log pi (1)

be the entropy of (p1, p2, . . . , pm) .

(a) (Grouping property) Prove that

H(p1, p2, p3, . . . , pm) = H(p1 + p2, p3, . . . , pm) + (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
.

The above property models the fact that the uncertainty in choosing among m objects should be
equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in
the selected subgroup.

(b) Prove that if a function F of probability vectors (p1, p2, . . . , pm) , m ≥ 2 , is such that

1. F (p1, p2, . . . , pm) is continuous in the pi ’s,

2. F (p1, p2, . . . , pm) satisfies the grouping property (a),

3. F ( 1
m , . . . ,

1
m ) = logm ,

then F must be equal to the entropy (1).

Hint: Suppose that the p′is are rational, i.e., pi = mi

m for some positive integers {mi}i=1,...,k .
Show using (a) recursively that

F

(
1

m
, . . . ,

1

m

)
= F

(m1

m
, . . . ,

mk

m

)
+
∑
i

mi

m
F

(
1

mi
, . . . ,

1

mi

)
.

Solution 1. (a) Using (1), we can rewrite the right-hand side as

H(p1 + p2,p3, . . . , pm) + (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
= −(p1 + p2) log(p1 + p2)−

m∑
i=3

pi log pi + (p1 + p2)

(
− p1
p1 + p2

log
p1

p1 + p2
− p2
p1 + p2

log
p2

p1 + p2

)

= −(p1 + p2) log(p1 + p2)−
m∑
i=3

pi log pi − p1 log p1 − p2 log p2 + (p1 + p2) log(p1 + p2)

= −
m∑
i=1

pi log pi = H(p1, p2, p3, . . . , pm).
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(b) It can be proved by induction that the grouping property holds for grouping an arbitrary number of
elements. Hence, using it recursively on F

(
1
m , . . . ,

1
m

)
, we get

F

(
1

m
, . . . ,

1

m

)
= F

(m1

m
, . . . ,

mk

m

)
+
∑
i

mi

m
F

(
1

mi
, . . . ,

1

mi

)
.

Using property 3 on F
(

1
m , . . . ,

1
m

)
and on each F

(
1
mi
, . . . , 1

mi

)
, we get

logm = F
(m1

m
, . . . ,

mk

m

)
+
∑
i

mi

m
logmi.

Rearranging the last equation gives

F
(m1

m
, . . . ,

mk

m

)
= −

∑
i

mi

m
log

mi

m
.

This proves the result for every rational probability vector. By using the continuity of F (property 1),
we can extend the result to any probability vector.

Problem 2: Entropy and Geometry

Suppose X , Y and Z are random variables.

(a) Show that H(X) +H(Y ) +H(Z) ≥ 1
2

[
H(X,Y ) +H(Y,Z) +H(Z,X)

]
.

(b) Show that H(X,Y ) +H(Y, Z) ≥ H(X,Y, Z) +H(Y ) .

(c) Show that

2
[
H(X,Y ) +H(Y,Z) +H(Z,X)

]
≥ 3H(X,Y, Z) +H(X) +H(Y ) +H(Z).

(d) Show that H(X,Y ) +H(Y, Z) +H(Z,X) ≥ 2H(X,Y, Z) .

(e) Suppose n points in three dimensions are arranged so that their their projections to the xy , yz
and zx planes give nxy , nyz and nzx points. Clearly nxy ≤ n , nyz ≤ n , nzx ≤ n . Use part (d)
show that

nxynyznzx ≥ n2.

Solution 2. (a) By the sub-addivitity of Entropy we know that

H(X,Y ) ≤ H(X) +H(Y )

H(Y,Z) ≤ H(Y ) +H(Z)

H(X,Z) ≤ H(X) +H(Z).

Adding the three inequalities together we retrieve:

H(X) +H(Y ) +H(Z) ≥ 1

2
(H(X,Y ) +H(Y, Z) +H(Z,X)) .

(b) It is easier to show

H(X,Y ) +H(Y,Z)− (H(X,Y, Z) +H(Y )) ≥ 0.

Indeed we have that:

H(X|Y )−H(X|Y, Z) = I(X;Z|Y ) ≥ 0.
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(c) Applying (b), but inverting the roles of X,Y, Z we get:

H(X,Y ) +H(Y,Z) ≥ H(X,Y, Z) +H(Y )

H(Y, Z) +H(Z,X) ≥ H(Y, Z,X) +H(Z)

H(Y,X) +H(X,Z) ≥ H(Y,X,Z) +H(X).

Adding the three inequalities together gives us (c).
(d) By sub-addivity again, we have that:

H(X,Y, Z) ≤ H(X) +H(Y ) +H(Z). (2)

Using (2) in (c) we retrieve

2[H(X,Y ) +H(Y,Z) +H(X,Z)] ≥ 3H(X,Y, Z) +H(X) +H(Y ) +H(Z)

≥ 3H(X,Y, Z) +H(X,Y, Z)

= 4H(X,Y, Z).

(d) Let {(xi, yi, zi) : i = 1, . . . , n} be our set of points. Suppose that X,Y, Z are random variables
representing the components of the n points with respect to the x, y, z axes. Furthemore, suppose that
three random variables are such that Pr((X,Y, Z) = (xi, yi, zi)) = 1/n for every 1 ≤ i ≤ n . This implies
that

H(X,Y, Z) = log n. (3)

Consequently the random couples (X,Y ), (X,Z), (Y, Z) represent the projections of the points respec-
tively, on the xy ,xz and yz axes. We can thus say that

H(X,Y ) ≤ log nxy (4)

H(X,Z) ≤ log nxz (5)

H(Y, Z) ≤ log nyz. (6)

Using (3),(4),(5),(6) in (d) we retrieve the following:

log (nxynxznyz) ≥ H(X,Y ) +H(Y,Z) +H(X,Z)] ≥ 2H(X,Y, Z) = 2 log n.

Which is equivalent to:
(nxynxznyz) ≥ n2.

Problem 3: Conditional KL divergence

We saw in class that a probability kernel PY |X : X → Y is a matrix PY |X = PY |X(y|x) : x ∈ X , y ∈ Y
such that PY |X(y|x) ≥ 0 , and for each x ∈ X ,

∑
y PY |X(y|x) = 1 . Let PX ∈ Π(X ) be a probability dis-

tribution on X . We define the conditional KL divergence between two probability kernels PY |X : X → Y
and QY |X : X → Y given PX to be

D(PY |X‖QY |X |PX) ,
∑
x∈X

PX(x)D(PY |X(·|x)‖QY |X(·|x))

where for every x , D(PY |X(·|x)‖QY |X(·|x)) is the standard KL divergence between the two distributions
PY |X(·|x) and QY |X(·|x) over Y .

(a) (Chain rule of the KL divergence) Show that

D(PX,Y ‖QX,Y ) = D(PX‖QX) +D(PY |X‖QY |X |PX)

where PX,Y and QX,Y are two joint distributions on X×Y such that PX,Y (x, y) = PX(x)PY |X(y|x)
and QX,Y (x, y) = QX(x)QY |X(y|x) .
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(b) Using (a), show that
D(PY |X‖QY |X |PX) = D(PX,Y ‖QX,Y )

where PX,Y (x, y) = PX(x)PY |X(y|x) and QX,Y (x, y) = PX(x)QY |X(y|x) .

(c) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class,
show that

D(PY ‖QY ) ≤ D(PY |X‖QY |X |PX)

where PY (y) =
∑

x∈X PX(x)PY |X(y|x) and QY (y) =
∑

x∈X PX(x)QY |X(y|x) .

Solution 3. (a)

D(PXY ‖QXY ) =
∑
x,y

PXY (x, y) log
PXY (x, y)

QXY (x, y)

=
∑
x,y

PX(x)PY |X(y|x) log
PX(x)PY |X(y|x)

QX(x)QY |X(y|x)

=
∑
x,y

PX(x)PY |X(y|x) log
PX(x)

QX(x)
+
∑
x,y

PX(x)PY |X(y|x) log
PY |X(y|x)

QY |X(y|x)

= D(PX‖QX) +
∑
x

PX(x)D(PY |X(·|x)‖QY |X(·|x)) = D(PX‖QX) +D(PY |X‖QY |X |PX).

(b)
D(PXY ‖QXY ) = D(PX‖PX) +D(PY |X‖QY |X |PX) = D(PY |X‖QY |X |PX).

(c) Define the kernel

W (ỹ|x, y) =

{
1, if ỹ = y,

0, otherwise.

Then we have PỸ (ỹ) =
∑

x,y PXY (x, y)W (ỹ|x, y) = PY (ỹ) and QỸ (ỹ) =
∑

x,y QXY (x, y)W (ỹ|x, y) =
QY (ỹ) . Hence, by the DPI we have

D(PY |X‖QY |X |PX) = D(PXY ‖QXY ) ≥ D(PỸ ‖QỸ ) = D(PY ‖QY ).

Problem 4: Variational characterization of mutual information

Let X and Y be two random variables over finite alphabets X and Y with joint probability distribution
PXY , and let I(X;Y ) be their mutual information.

(a) Show that for every function f(X,Y ) such that EPXPY
[ef(X,Y )] is finite,

I(X;Y ) ≥ EPXY
[f(X,Y )]− EPY

[logEPX
[ef(X,Y )]].

(b) Show that there is a function f̃(X,Y ) such that EPXPY
[ef(X,Y )] is finite and

I(X;Y ) = EPXY
[f̃(X,Y )]− EPY

[logEPX
[ef̃(X,Y )]].

(c) Conclude that
I(X;Y ) = sup

f
EPXY

[f(X,Y )]− EPY
[logEPX

[ef(X,Y )]]

where the sup is over all functions f such that EPXPY
[ef(X,Y )] is finite.
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Solution 4. (a)

EPXY
[f(X,Y )]− EPY

[logEPX
[ef(X,Y )]] = EPY

[EPX|Y [f(X,Y )]− logEPX
[ef(X,Y )]]

≤ EPY
[D(PX|Y ‖PX)] = I(X;Y )

where the inequality is due to the Donsker-Varadhan form of the KL divergence seen in class.

(b) Pick f(x, y) = log PXY (x,y)
PX(x)PY (y) . For this choice of f , EPXPY

[ef(X,Y )] is finite and simple substitution

shows that EPXY
[f(X,Y )]− EPY

[logEPX
[ef(X,Y )]] = I(X;Y ) .

(c) By (a) we know that supf EPXY
[f(X,Y )]− EPY

[logEPX
[ef(X,Y )]] is a lower bound on I(X;Y ) . By

(b) we know that the bound can be achieved with f(x, y) = log PXY (x,y)
PX(x)PY (y) . This proves that the bound

is actually an equality.

Problem 5: f -divergences

Suppose f is a convex function defined on (0,∞) with f(1) = 0 . Define the f -divergence of a distri-
bution P from a distribution Q as

Df (P‖Q) ,
∑
x

Q(x)f(P (x)/Q(x)).

In the sum above we take f(0) := limt→0 f(t) , 0f(0/0) := 0 , and 0f(a/0) := limt→0 tf(a/t) =
a limt→0 tf(1/t) .

(a) Show that the following basic properties hold:

1. Df1+f2(P‖Q) = Df1(P‖Q) +Df2(P‖Q)

2. Df (P‖P ) = 0

3. Df (P‖Q) ≥ 0

(b) (Monotonicity) Show that Df (PXY ‖QXY ) ≥ Df (PX‖QX) .

(c) (Data processing inequality) Show that for any probability kernel W (y|x) from X to Y , and any
two distributions PX and QX on X

Df (PX‖QX) ≥ Df (PY ‖QY )

where PY and QY are probability distributions on Y given by PY (y) =
∑

x PX(x)W (y|x) and
QY (y) =

∑
xQX(x)W (y|x) .

(d) Show that if f is strictly convex in 1, then Df (P‖Q) = 0 if and only if P = Q .

Solution 5. (a)

1.

Df1+f2(P‖Q) =
∑
x

Q(x) [f1(P (x)/Q(x)) + f2(P (x)/Q(x))]

=
∑
x

Q(x)f1(P (x)/Q(x)) +
∑
x

Q(x)f2(P (x)/Q(x))

= Df1(P‖Q) +Df2(P‖Q).

2. Df (P‖P ) =
∑

x P (x)f(P (x)/P (x)) =
∑

x P (x)f(1) = 0.
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3. Df (P‖Q) =
∑

xQ(x)f(P (x)/Q(x)) ≥ f
(∑

xQ(x)P (x)
Q(x)

)
= f (

∑
x P (x)) = f(1) = 0 where we

used Jensen’s inequality since f is convex.

(b)

Df (PXY ‖QXY ) =
∑
x,y

QXY (x, y)f

(
PXY (x, y)

QXY (x, y)

)
=
∑
x

QX(x)
∑
y

QY |X(y|x)f

(
PXY (x, y)

QXY (x, y)

)

≥
∑
x

QX(x)f

(∑
y

QY |X(y|x)
PXY (x, y)

QXY (x, y)

)

=
∑
x

QX(x)f

(∑
y PXY (x, y)

QX(x)

)
=
∑
x

QX(x)f

(
PX(x)

QX(x)

)
= Df (P‖Q)

where the inequality is again due to Jensen.

(c) From (b) we have Df (PXY ‖QXY ) ≥ Df (PY ‖QY ) . But we also have

Df (PXY ‖QXY ) =
∑
x,y

QX(x)W (y|x)f

(
PX(x)W (y|x)

QX(x)W (y|x)

)

=
∑
x

QX(x)

(∑
y

W (y|x)

)
f

(
PX(x)

QX(x)

)
= Df (PX‖QX)

that is, Df (PX‖QX) ≥ Df (PY ‖QY ) .

(d) Since f is strictly convex in 1, for every s, t > 0 and 0 < α < 1 such that αs + (1 − α)t = 1 , we
have αf(s) + (1− α)f(t) > f(1) = 0 . Suppose by contradiction that P 6= Q and Df (P‖Q) = 0 . Then

there exists x̃ such that P (x̃) 6= Q(x̃) . Define the random variable Y = 1{X=x̃} , and let p , P (x̃)

and q , Q(x̃) . Using (c) we get that 0 ≤ Df (PY ‖QY ) = Df (p‖q) ≤ Df (P‖Q) = 0 , i.e., Df (p‖q) =

qf
(

p
q

)
+ (1 − q)f

(
1−p
1−q

)
= 0 . But this contradicts the fact that f is strictly convex in 1, since if you

set s = p
q , t = 1−p

1−q and α = q , the last equation can be rewritten as αf(s) + (1 − α)f(t) = 0 , a
contradiction.

Problem 6: Entropy and combinatorics

Let n ≥ 1 and fix some 0 ≤ k ≤ n . Let p = k
n and let Tn

p ⊂ {0, 1}n be the set of all binary
sequences with exactly np ones.

(a) Show that
log |Tn

p | = nh(p) +O(log n)

where h(p) = −p log p− (1− p) log(1− p) is the binary entropy function. Hint: Stirling’s approxi-
mation states that for every n ≥ 1 ,

e
1

12n+1

√
2πn

(n
e

)n
≤ n! ≤ e 1

12n

√
2πn

(n
e

)n
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(b) Let Qn = Bernoulli(q)n be the i.i.d. Bernoulli distribution on {0, 1}n . Show that

logQn[Tn
p ] = −nd(p‖q) +O(log n)

where d(p‖q) = p log p
q + (1− p) log 1−p

1−q is the binary KL divergence.

Solution 6. (a) When p = 0 or 1 , we have |Tn
p | = 1 , or equivalently log |Tn

p | = 0 , so the result holds

trivially, since h(p) = 0 for p = 0, 1 . For p 6= 0, 1 , we have that |Tn
p | =

(
n
np

)
= n!

(np)!(n(1−p))! . Using

Stirling’s approximation on the three factorials we get

1√
2πnp(1− p)

p−np(1− p)−n(1−p)e
1

12n+1−
1

12np−
1

12n(1−p) ≤ |Tn
p |

≤ 1√
2πnp(1− p)

p−np(1− p)−n(1−p)e
1

12n−
1

12np+1−
1

12n(1−p)+1 .

By taking the log on each side, we get

nh(p)− 1

2
log(2πnp(1− p)) +

1

12n+ 1
− 1

12np
− 1

12n(1− p)
≤ log |Tn

p |

≤ nh(p)− 1

2
log(2πnp(1− p)) +

1

12n
− 1

12np+ 1
− 1

12n(1− p) + 1
.

Since 1
n ≤ p ≤

n−1
n and the same holds for 1− p , we can obtain the following (loose) bounds:

−1

2
log n+

1

2
log(2π) ≤ 1

2
log(2πnp(1− p)) ≤ 1

2
log n+

1

2
log(2π)

1

12n+ 1
− 1

12np
− 1

12n(1− p)
≥ −2

1

12n
− 1

12np+ 1
− 1

12n(1− p) + 1
≤ 1

so that we get

nh(p)− 1

2
log n− 1

2
log(2π)− 2 ≤ log |Tn

p | ≤ nh(p) +
1

2
log n− 1

2
log(2π) + 1

i.e., log |Tn
p | = nh(p) +O(log n) .

(b) We have

Qn[Tn
p ] =

(
n

np

)
qnp(1− q)n(1−p) = |Tn

p |qnp(1− q)n(1−p)

and therefore

logQn[Tn
p ] = log |Tn

p |+ np log q + n(1− p) log(1− q)
= nh(p) + np log q + n(1− p) log(1− q) +O(log n)

= −nd(p‖q) +O(log n)

where in the last step we used (a).
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