Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2023
Gastpar & Urbanke September 26, 2023

Problem Set 2 (Graded) —Due Tuesday, October 10, before class starts

For the Exercise Sessions on September 26 and Oct 3

Last name First name SCIPER Nr Points

Problem 1: Axiomatic definition of entropy
Let (p1,p2,...,pm) besuch that p; >0 for i=1,...,m and >, p; =1. Let
H(py,....pm) = — Y _ pilogp; (1)
i
be the entropy of (p1,p2,.--,Pm)-

(a) (Grouping property) Prove that

D1 D2
H(p1,p2,03,---,Pm) = H(p1 + D2,D3,---,Pm) + (P1 + P H( ; )
(1 2 3 m) (1 2 3 m) (1 2) p1+p2 p1+p2

The above property models the fact that the uncertainty in choosing among m objects should be
equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in
the selected subgroup.

(b) Prove that if a function F' of probability vectors (p1,pa,...,pm), m > 2, is such that

1. F(p1,p2,-..,pm) is continuous in the p;’s,
2. F(p1,p2,-..,pm) satisfies the grouping property (a),
3. F(%7,%) =logm,

then F must be equal to the entropy (1).

Hint: Suppose that the pis are rational, i.e., p; = " for some positive integers {m;}i=1, -
Show using (a) recursively that

1 1 m m m; 1 1
F(mm> :F(H”Llrrf)+sz<mm)

Solution 1. (a) Using (1), we can rewrite the right-hand side as

b1 P2
(pl P2,pP3, 7pm) (pl p2) <p1 +p2’ 1 _|_p2)

S D1 b1 D2 D2
= —(p1 +p2)log(p1 +p —Epilo pi+(p1+Dp (— lo — lo )
1 2) log(p1 2) Pt s 7 2) p1+ P2 gpl +p2  p1+D2 gpl + p2

= —(p1 + p2)log(p1 +p2) — Y _ pilogpi — pilogpr — palogps + (p1 + p2) log(p1 + p2)
=3

m
==Y pilogpi = H(p1,p2,p3, - -, Dm)-
1=1



(b) It can be proved by induction that the grouping property holds for grouping an arbitrary number of

elements. Hence, using it recursively on F' (%, ey i) , we get
1 1 i 1 1
P ) = F (2 2 S ().
m m m m —m m; m;
Using property 3 on F (%, ceey %) and on each F' (ﬁ, ey Wll) , we get
logm = F (ﬂ,...,%) —s—zﬂlogmi.
m m —m

Rearranging the last equation gives
mi mg myg mg
(T 23 g™
m m zl: m & m

This proves the result for every rational probability vector. By using the continuity of F' (property 1),
we can extend the result to any probability vector.

Problem 2: Entropy and Geometry
Suppose X, Y and Z are random variables.

(a) Show that H(X)+ H(Y)+ H(Z) > §[H(X,Y)+ H(Y,Z)+ H(Z, X)].

1
2
(b) Show that H(X,Y)+ H(Y,Z) > H(X,Y,Z) + H(Y).
(c) Show that

2[H(X,Y)+ H(Y,Z)+ H(Z,X)| >3H(X,Y,Z)+ H(X)+ H(Y) + H(Z).

(d) Show that H(X,Y)+ H(Y,Z)+ H(Z,X) >2H(X,Y, Z).

(e) Suppose n points in three dimensions are arranged so that their their projections to the zy, yz
and zx planes give ng,, n,, and n., points. Clearly ngy <n, ny, <n, n,; <n. Use part (d)
show that

NpyNyzNzg > n?.

Solution 2. (a) By the sub-addivitity of Entropy we know that

H(X,Y) < H(X) + H(Y)
H(Y,Z) < H(Y) + H(Z)
H(X, Z) < H(X) + H(Z).
Adding the three inequalities together we retrieve:

HX)+HY)+H(Z)>-(HX,Y)+H(Y,Z)+ H(Z, X)).

N =

(b) Tt is easier to show
H(X,Y)+ H(Y,Z) - (H(X,Y,Z) + H(Y)) > 0.
Indeed we have that:

H(X|Y) - H(X|Y,Z)=I(X;Z|]Y) > 0.



(¢) Applying (b), but inverting the roles of X,Y,Z we get:

H(X,Y)+ H(Y,Z) > HX,Y,Z) + HY)
H(Y,Z)+H(Z,X)>H(Y,Z,X) + H(Z)
H(Y,X)+ H(X,Z)> H(Y,X,Z)+ H(X).

Adding the three inequalities together gives us (¢).
(d) By sub-addivity again, we have that:

H(X,Y,2) < H(X) + H(Y) + H(Z). @)
Using (2) in (¢) we retrieve

2QHX,Y)+ H(Y,Z)+ H(X,Z)] > 3H(X,Y, Z)+ H(X)+ H(Y)+ H(Z)
>3H(X,Y,Z)+ H(X,Y,Z)
—4H(X,Y, 7).

(d) Let {(zi,yi,2i) : ¢ = 1,...,n} be our set of points. Suppose that X,Y,Z are random variables
representing the components of the n points with respect to the x,y, 2z axes. Furthemore, suppose that
three random variables are such that Pr((X,Y,Z) = (z;,yi,2:)) = 1/n for every 1 < i < n. This implies
that

H(X,Y,Z) =logn. (3)

Consequently the random couples (X,Y), (X, Z), (Y, Z) represent the projections of the points respec-
tively, on the xy,rz and yz axes. We can thus say that

H(X,Y) <logng, (4)
H(X, Z) <logng. ()
H(Y,Z) <logny.. (6)

Using (3),(4),(5),(6) in (d) we retrieve the following:
log (Nayng.ny-) > H(X,Y)+ H(Y,Z)+ H(X,Z)] > 2H(X,Y, Z) = 2logn.

Which is equivalent to:
(NayNganyz) > 0.

Problem 3: Conditional KL divergence

We saw in class that a probability kernel Py|x : X — Y is a matrix Py x = Pyx(ylz) :x € X,y €)Y
such that Py x(ylz) > 0, and for each z € X, Py|x(y[z) =1. Let Px € II(X) be a probability dis-
tribution on X'. We define the conditional KL divergence between two probability kernels Py x : X — Y
and Qy|x : X — Y given Px to be

D(Pyix||Qvix|Px) £ Y Px(2)D(Pyx(|2)l|Qy x (-|z))
r€EX

where for every z, D(Py|x(:|7)||Qy|x(:|7)) is the standard KL divergence between the two distributions
Py x(-]z) and Qy|x(:|z) over Y.

(a) (Chain rule of the KL divergence) Show that

D(Pxy|@x,y) = D(Px||Qx) + D(Py|x||Qy|x|Px)

where Pxy and Qxy are two joint distributions on &' x) such that Px y(z,y) = Px(z)Py|x (y|z)
and Qxy(z,y) = Qx(z)Qy x (y|r).



(b) Using (a), show that
D(Pyx||Qyx|Px) = D(Px,y|@xy)

where Pxy(z,y) = Px(x)Py|x(ylr) and Qx y(z,y) = Px(z)Qy|x (y|z).

(¢) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class,
show that
D(Py||Qy) < D(Pyx||Qyx|Px)

where Py (y) = > cx Px(z)Pyix(ylz) and Qv (y) = > cx Px(2)Qyx (y|z).

Solution 3. (a)

D(Pxy|@xy) ZPXY (z,y)log }QDX);((? ?;))
~ 2 Pl e )
) v ix (vle)

Px(x r
_ ZPX )Py x (y|z) log Qi((x) +§PX( )Py ix (ylz) logm

= D(PX”QX + ZPX(»’C)D(PY|X('|5E)||QY\X('\I)) = D(Px[|Qx) + D(Pyx||Qy|x|Px)-
(b)

D(Pxvy|Qxy) = D(Px||Px) + D(Py|x||Qy|x|Px) = D(Pyx||Qy|x|Px)-
(c) Define the kernel

- 1, ifyg=uy,
W(glz,y) = { .

0, otherwise.

Then we have Py (g) = 3., Pxy(z,y)W(jlz,y) = Pr(§) and Qp(9) = 32, , @xv (z, y)W(glz,y) =
Qv (7). Hence, by the DPI we have

D(Py|x||Qy|x|Px) = D(Pxy||Qxy) > D(Py||Qy) = D(Py||Qy).

Problem 4: Variational characterization of mutual information

Let X and Y be two random variables over finite alphabets X and ) with joint probability distribution
Pxy ,and let I(X;Y) be their mutual information.

(a) Show that for every function f(X,Y) such that Ep, p, [e/(*Y)] is finite,

I(X;Y) 2 Epy, [f(X,Y)] = Ep, log Epy [e/ Y]],
(b) Show that there is a function f(X, Y) such that Ep, p, [e/(X:Y)] is finite and
I(X;Y) =Ep,, [f(X,Y)] — Ep, [log Ep, [e/ )],

(¢) Conclude that
I(X:Y) = supEp, [f(X.Y)] ~ Ep, [log Ep /"))

where the sup is over all functions f such that Ep, p, [e/(Y)] is finite.



Solution 4. (a)
Epy, [f(X7 Y)] —Ep, [IOg Epy [ef(X7Y)]] =Ep, []EPX\Y [f(X7 Y)] —logEpy [ef(X’Y)]]
< Ep, [D(Px|y||Px)] = I(X;Y)
where the inequality is due to the Donsker-Varadhan form of the KL divergence seen in class.

(b) Pick f(x,y) = log PI;%% . For this choice of f, Epy p, [e/(XY)] is finite and simple substitution

shows that Ep, ., [f(X,Y)] — Ep, [logEp, [e/XY)]] = I(X;Y).
(c) By (a) we know that sup; Epy, [f(X,Y)] — Ep, [logEp, [ef(XY)]] is a lower bound on I(X;Y). By

(b) we know that the bound can be achieved with f(z,y) = log ;;%% . This proves that the bound

is actually an equality.

Problem 5: f-divergences

Suppose f is a convex function defined on (0,00) with f(1) = 0. Define the f-divergence of a distri-
bution P from a distribution @ as

Dy (PllQ) = ZQ /Q(x))-

In the sum above we take f(0) := lim;_,o f(¢), 0f(0/0) := 0, and 0f(a/0) := lim_otf(a/t) =
alim;_,otf(1/t).

(a) Show that the following basic properties hold:

L Df1+f2(P||Q) :Dfl(PHQ)—i_sz(PHQ)
2. D;(P|P) =0
3. Dy(P|Q) =0

(b) (Monotonicity) Show that Dy(Pxvy||@xy) > Dy(Px||Qx).

(¢) (Data processing inequality) Show that for any probability kernel W (y|z) from X to Y, and any
two distributions Px and Qx on X

Dy (Px||@x) > Dy (Py||Qy)

where Py and Qy are probability distributions on Y given by Py (y) = >, Px(z)W(y|r) and

Qv (y) = >, Qx (@)W (ylz).
(d) Show that if f is strictly convex in 1, then D;(P||Q) =0 if and only if P = Q.

Solution 5. (a)

1.
D+, (PQ) = ZQ 2)/Q(x)) + f2(P(2)/Q())]
= ZQ ) f1( )+ ZQ z)/Q(x))
=Dy, (P||Q) + Dy, (P|Q).

2. Dy(P||P) =3, P(z)f(P(x)/P(x)) = 3, P(x) f(1) = 0.



3. Di(PQ) = 32, Q) f(P(x)/Q(x)) = f (ch Q=) g

used Jensen’s inequality since f is convex.

) = f(S, P(a)) = /(1) = 0 where we

(b)

Dy(Pxy||Q@xy) = ZQXY(T/,ZJ)f < ¥(@,y >

$,

= ZQX ZQY|X ylz) f (S):; )
Z;QX <ZQYX (y|z) Ox (( ))>
:ZQX(l')f<Z PXme)
oy (PX@)Y

=Y axer (Ghiy) = PilPle)

where the inequality is again due to Jensen.

(¢) From (b) we have D¢(Pxy||Qxvy) > Ds(Py|Qy). But we also have

Dy(Pyr1Qxy) = S Qx W s (Bl il

=3 Qx(a) (Z W<y|x>> / ( n ((x)))

= Dy (Px[|@x)

that is, Dy(Px[|@x) = D¢(Py[|Qy).

(d) Since f is strictly convex in 1, for every s,¢ > 0 and 0 < o < 1 such that as+ (1 —a)t =1, we
have af(s)+ (1 —a)f(t) > f(1) =0. Suppose by contradiction that P # @ and D(P||Q) =0. Then
there exists # such that P(Z) # Q(Z). Define the random variable Y = I;x_z}, and let p £ P(%)
and ¢ £ Q(Z). Using (c) we get that 0 < Dy(Py[|Qy) = Dy(plla) < Ds(P||Q) = 0, ie., Dy(pllq) =
qf (g) +(1-9f (%5) = 0. But this contradicts the fact that f is strictly convex in 1, since if you
set s = g, t = 1;_2' and a = ¢, the last equation can be rewritten as af(s) + (1 — a)f(t) =0, a
contradiction.

Problem 6: Entropy and combinatorics

Let n > 1 and fix some 0 < kK < n. Let p = % and let TI? C {0,1}™ be the set of all binary
sequences with exactly np ones.

(a) Show that
log |T}}'| = nh(p) + O(logn)
where h(p) = —plogp — (1 — p)log(l — p) is the binary entropy function. Hint: Stirling’s approxi-

mation states that for every n > 1,

1 n\" 1 n\"
e12nt1 27Tn (—) S n' S e12n 27Tn (*)
e (&



(b) Let Q™ = Bernoulli(¢)"™ be the i.i.d. Bernoulli distribution on {0,1}". Show that
log Q"[T}] = —nd(pllg) + O(logn)

where d(p|lq) = plog% + (1 —p)log i_fz is the binary KL divergence.

Solution 6. (a) When p =0 or 1, we have |T}'| =1, or equivalently log|T}}| = 0, so the result holds

trivially, since h(p) = 0 for p = 0,1. For p # 0,1, we have that |T'| = (&;) = ng*p))!' Using

Stirling’s approximation on the three factorials we get

1
2mnp(l — p)

p_"p(l _ p>—n(1—p)el27}+1 ~ T2 P < |T£|

1

= V2 —p)

1 1

1
nP(] — p)*n(lfp)e T2n ~ 12npTl  12n(1—p)+1

By taking the log on each side, we get

1 1 1
12n+1 12np 12n(1 —p)

1
nh(p) — B log(2mnp(1 — p)) + < log|T},|

1 1 1

1
< nh(p) — = log(2rnp(1 — — - .
< nh(p) = 3 logQmmp(l =) + 150 = 50 = a7 1

Since % <p< "T_l and the same holds for 1 — p, we can obtain the following (loose) bounds:

1 1
log(2mnp(1 —p)) < 3 logn + 3 log(27)

N =

1 1
—3 logn + 3 log(2m) <

1 1 1
_ _ > 9
12n+1 12np 12n(1—p) —

1 1 1
12n 12np+1 12n(1—p)+1

<1

so that we get
1 1 . 1 1
nh(p) — 3 logn — 3 log(2m) — 2 <log |T}'| < nh(p) + 3 logn — 5 log(2m) +1

ie., log|T}'| = nh(p) + O(logn).
(b) We have

n mn n n: n — mn n n —
Q"(T;] = (np>q P(1— )" = [T |q" (1 — )"

and therefore
log Q"[T,)] = log|T,'| + nplogq +n(1 — p)log(1l — q)
= nh(p) +nplog g+ n(1 — p)log(1l — ¢q) + O(logn)
= —nd(pl/q) + O(logn)

where in the last step we used (a).



