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Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rosler

Exercise Sheet 12 — Solutions

Exercise 1:

(a) Restricting smooth vector fields to submanifolds: Let M be a smooth manifold, let S
be an immersed submanifold of M, and let ¢: S < M be the inclusion map. Prove
the following assertions:

(i) Y € X(M) and if there is X € X(9) that is t-related to Y, then Y € X(M) is
tangent to S.

(i) If Y € X(M) is tangent to S, then there is a unique smooth vector field on 5,
denote by Y|g, which is t-related to Y.
[Hint: Determine first the candidate vector field on S and then use Theorem 5.6
and Proposition 5.16 to show that it is smooth.]

(b) Lie brackets of smooth vector fields tangent to submanifolds: Let M be a smooth
manifold and let S be an immersed submanifold of M. If Y] and Y5 are smooth vector
fields on M that are tangent to S, then show that their Lie bracket [Y7,Y5s] is also
tangent to S.

Solution:

(a) Since X is t-related to Y, it holds that Y, = di,(X,) for all p € S, which means that
Y, eT,S forallpe S, ie., Y is tangent to S.

(b) Since by hypothesis we have Y), € di,(7,5) for all p € S, we may define a rough vector
field X: S — T'S by requiring that, for any p € S, X, € T,,S is the unique vector such
that di,(X,) = Y,. By the injectivity of di,, it is clear that X is unique, and that it is
t-related to Y, so it remains to show that X is smooth. To this end, let p € S be arbitrary.
By Proposition 5.16 there is an open neighborhood V' of p in S such that V' is embedded
in M. By Theorem 5.6 there exists a smooth chart (U, (:cz)) for M such that VNU is a

k-slice in U — we may assume that V' N U is the slice given by 2¥*! = ... = 2" = 0 — and
(x!,...,2%) are local coordinates for S in V N U Consider the coordinate representation
-0
Y = Y'—
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of Y on U. By Proposition 7.8 (evaluating the above expression at the coordinate function
o' with i > k) we infer that Y = ... = Y™ = 0 on V N U, since Y is tangent to S.
Therefore,

X =Y Yy i

i
1<i<k 0

unv

is the coordinate representation of X on V N U, and each Y|~y is smooth by part (a)
of Exercise 5, Sheet 8, so X is smooth on U NV, and we are done.
(Let us now verify for completeness that

? i 0
X = Z Y|U0V%

1<i<k unv

is the coordinate representation of X on VN U. Let f € C®(U NV) be arbitrary, and
consider the function
F:=foylomoyp:U —R,

where p = (21,...,2"), ¥ = (2',...,2")|yny and m: R® — R is the projection onto
the first k coordinates. Then F' is smooth, as ¢ and v are smooth charts for M and V/,
respectively, and furthermore F' o = f, i.e., F' is an extension of f to U. We have

X,(f) = X,(F o1) = di(%,)(F) = Vy(F) = 3 Vi) 2E ()

1<i<k Oat
Now (you should convince yourself that) for all 1 <7 < k we have

OF of
o (p) = 55 ),

and thus

%= 3 Vo) L)

1<i<k

for any p € U NV and any f defined on a neighborhood of p in M.)

Exercise 2: Let VV be a smooth vector field on a smooth manifold M, let J C R be an
interval, and let v: J — M be an integral curve of V. Prove the following assertions:

(a) Rescaling lemma: For any a € R, the curve
F:J = M, t— ~(at)
is an integral curve of the vector field V := aV on M, where J := {teR|at e J}.
(b) Translation lemma: For any b € R, the curve
F:J = M, t—~(t+b)
is also an integral curve of V on M, where J = {t e R |t +b e J}.
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Solution:

(a) If ¢t € J, then

~I =

F'(t) = av'(at) = aViar = Vi)
(b) If t € J, then
() =t +b) = Vi = Vs

Exercise 3:

(a) Compute the Lie bracket [X,Y] of each of the following pairs of smooth vector fields
X and Y on R?:

0 0
. . . 2 _
(i) X = Y 2xy By and Y 3
.. 0 0 0 0
(ll)X——y%—i—Zﬁa—y and Y__Za_y—i_y&

(b) Compute the flow of each of the following smooth vector fields on R?:

0
=xr— +2y—.
(i) V== o + 2y 3y
0 0
(i) W= T T ya—y.
Solution:
(a) In case (i), writing
0 0 0
X=0-— —20y* — +y—
ox Y oy Ty 0z
and 5 5 P
Y =0 7 +1 9 +0 R
by invoking part (a) of Ezercise 5, Sheet 11 we compute that
0 0
X, Y] =dry — — —.
In case (ii), we similarly obtain
0 0

(b) We first deal with (i); we argue exactly as in the solution to part (c) of Erzercise 3,
Sheet 11. Observe first that the unique maximal integral curve of V' starting at p = (0, 0)
is the constant curve vp: R — R?, ¢t — (0,0); see Ezercise 6(a). Now, if v: J — R? is a
smooth curve, written in standard coordinates as v(t) = (y*(¢),7(¢)), then the condition
7' (t) = V4 for v to be an integral curve of V' translates to

FHE) =7'(1),
Tt =277(1).
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Therefore, there are constants ¢q, co € R such that

i J=R =R, () = e,
7 J =R =R, ¥2(t) = cre*,

so the unique maximal integral curve of V starting at p = (p', p?) € R? is the smooth curve
v: R — R%, ¢ — (p'e’, p?e?), which in passing is a smooth immersion for p € R?\{(0,0)};
see Ezercise 6(b). In conclusion, V is a complete vector field on R? whose flow is the map

0y : R x R? —» R?, (t, (x,y)) > (a:et,yBQt).

We now deal with (ii). Working as in (i), we find that the unique maximal integral
curve of I starting at p = (p',p?) € R?is the smooth curve y: R — R?, t — (p'ef, p’e™),
which is a smooth immersion for p € R?\ {(0,0)}. Hence, the flow of the complete vector
field W is the map

O : R x R? = R?, (t, (m,y)) — (xet,ye_t).

Exercise 4: Let 0: Rx M — M be a smooth global flow on a smooth manifold M. Show
that the infinitesimal generator V' of 8 is a smooth vector field on M, and that each curve
9®): R — M is an integral curve of V.

Solution: By definition of the infinitesimal generator, we have

d

V. = —
Pedt

O(t,p) for all pe M. (%)
t=0

First, to show that V' is smooth, we apply Proposition 7.5(c): Given an open subset
U of M, a smooth real-valued function f on U, and p € U, we have

d
Vf(p) =Vpf = <E
d

Tt

9(t,p)> f

t=0

(fob)tp) =2

— 5| (of)E).

(0,p)

t=0

Since the composite map fo# is smooth, its partial derivative with respect to t is smooth
as well. Thus, V f(p) depends smoothly on p, which implies that V' is smooth.
Next, fix p € M and s € R. We have to show that

a
dt

—

9(t7p) = %(s,p) ;

t=s

=

H(t,ﬁ(s,p)).

t=0

dt
By definition of a flow, we have
0(t +s,p) = 0(t,0(s,p)).

and by first differentiating the above relation with respect to ¢ and then evaluating at
t = 0 we obtain the required identity.



Exercise 5:

(a) Naturality of flows: Let F: M — N be a smooth map. Let X € X(M) andY € X(N).
Let 0 be the flow of X and 7 be the flow of Y. Show that if X and Y are F-related,
then for each ¢ € R it holds that F(M;) C Ny and n; 0 F' = F o 0, on M;:

MtLNt

“| |

M,t L N,t

[Hint: Use part (e) of Exercise 4, Sheet 11.]

(b) Diffeomorphism invariance of flows: Let F: M — N be a diffeomorphism. If X €
X(M) and 0 is the flow of X, then show that the flow of F,X isn, = Fof;0 F7!
with domain N; = F(M,) for each t € R.

Solution:

(a) Denote by Dx resp. Dy the flow domain of € resp. n. Fix t € R and let p € M,.
Then t € Dg?) and 0P Dg?) — M is the unique maximal integral curve of X starting at
p. By part (e) of Ezercise 4, Sheet 11, F o §) is an integral curve of Y starting at F(p).
Hence, by maximality, we obtain that Dg?) C D&F(p D and thus ¢ € D&F(p ) which shows
that F(p) € N;. In conclusion, F(M;) C N;. Finally, we have

Fob(p) = F(0(t,p)) < n(t, F(p)) =m0 F(p),

where in (*) we again used that F o ) is an integral curve of Y starting at F(p) and
thus it is equal to nF®) where its defined (this uses the uniqueness part in the theorem
about solutions to a system of ODEs).

(b) Denote by n the flow of F,X. Applying part (a) to both F' and F~! we obtain that
F(M;) C N; and F~1(N;) C My, so that F(M;) = N;. Furthermore, the commutativity
of the above diagram shows that 7, = F o6, 0 F~! for all t € R.

Exercise 6: Let V' be a smooth vector field on a smooth manifold M and let 6: ® — M
be the flow generated by V. Prove the following assertions:

(a) If p € M is a singular point of V, then ®® = R and #® is the constant curve
0P (t) = p.
(b) If p € M is a regular point of V, then 8% : D® — M is a smooth immersion.

[Hint: Argue by contraposition and use the fundamental theorem on flows.]

Solution:

(a) If V,, = 0, then the constant curve v: R — M, t — p is clearly an integral curve of V,
so it must be equal to 8%”) by uniqueness and maximality.



(b) Assume that %) : ©®) — M is not a smooth immersion. Then 6®(s) = 0 for some
s € DP Set ¢ := 0P)(s) and note that Vg =0, since 6®) is an integral curve of V. Thus,
q is a singular point of V, and by part (a) we infer that D@ = R and that 6 is the
constant curve 09 (t) = q. It follows from Theorem 7.14(b) that D) = R as well, and
for all t € R the group law gives

0P (t) = 0,(p) = 0,5 (0(s,p)) = 0r—s(q) = q.

For t = 0 we obtain ¢ = §®(0) = p, and hence %) (t) = p and V, = §®’(0) = 0, which
contradicts the assumption that p is a regular point of V. This finishes the proof of (b).



