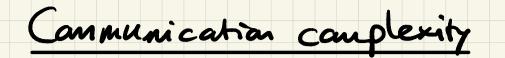
Quantum computation: lecture 4

· Communication camplexity: dassical setup

· Quantum communication complexity:

- . Yao's model
- · Cleve-Buhrman's model

· Distributed Deutsch-Josza's algorithm



Alice knows a vector x E {0,13"

Bob knows a vector y e E 0,13"

They would like to campute together the value

of f(x,y), where f: {0,13" x {0,13" - R is some for.

Def: communication complexity = minimum number

of bits that klice and Bob need to exchange

Alice 🚞 Bob

in order to compute f(x, y).

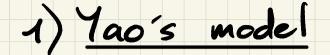
Example: f(x,y)= DISJ(x,y)

= 1 iff Vi=1...n, xi=0 or yi=0

=> $\Omega(n)$ classical bits (i.e., at least order n bits)

need to be exchanged in this case.

But with qubits, the situation is different...



Assume simply that Alice and Bob are

allowed to exchange qubits. How many

of them are needed?

 $\frac{Particular \text{ problem}:}{\text{Let } d_{H}(x,y) = \# \xi_{1 \le i \le n}: x_i \neq y_i} \text{ and }$

assume we know in advance that either x=y

(ie. du (2,y) = 0)

or $d_H(x,y) = \frac{n}{2}$

Classically, Alice & Bob need to

exchange $\Gamma \frac{n+1}{2}$] bits, in the worst case,

in order to decide between these two

alternatives.

We will see below that only O(log_n) qubits

Two remarks:

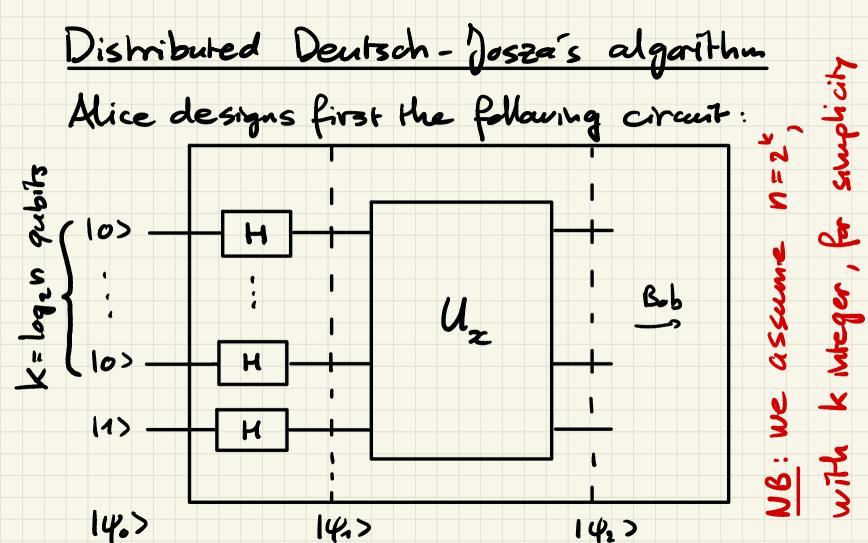
. For a reason that will become clear in a

minute, we will write $\begin{cases} \chi = (\chi_0 \dots \chi_{n-1}) \\ (y_0 \dots y_{n-1}) \end{cases}$ instead of $\begin{cases} \chi = (\chi_1 \dots \chi_n) \\ \chi = (\chi_1 \dots \chi_n) \end{cases}$

· Observe that:

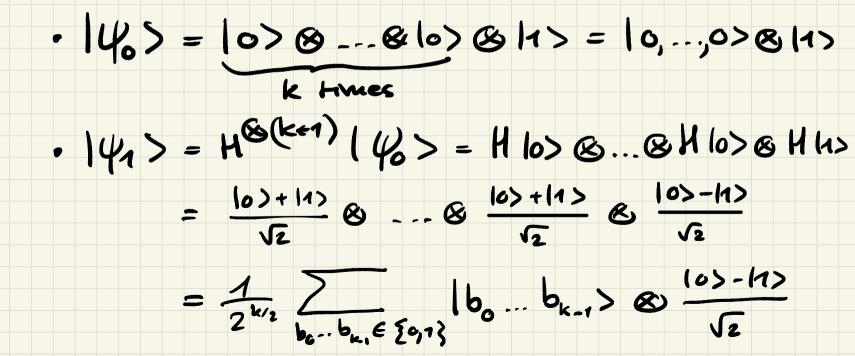
 $f(x,y) = \frac{1}{n} \sum_{i=0}^{n-1} (-1)^{x_i+y_i} = 1$ (x=y iff

 $d_{H}(x,y) = \frac{n}{2}$ iff $f(x,y) = \frac{1}{n} \sum_{i=0}^{n-1} (-1)^{x_i + y_i} = 0$



Again, let us campute the states at

the various stages:



 $b_0 \dots b_{k,n}$ encodes a position $0 \le b \le 2^k - 1 = n - 1$

 $\Rightarrow | \psi_1 \rangle = \frac{1}{\ln} \sum_{0 \le b \le n-1} | b \rangle \otimes \frac{| o \rangle - | n \rangle}{J_2}$

in short-hand notation

· gate Uz: its action on basis elements

is given by:

 $U_{z}(1b)\otimes 1z)=1b\otimes 81z \oplus x_{b}>$

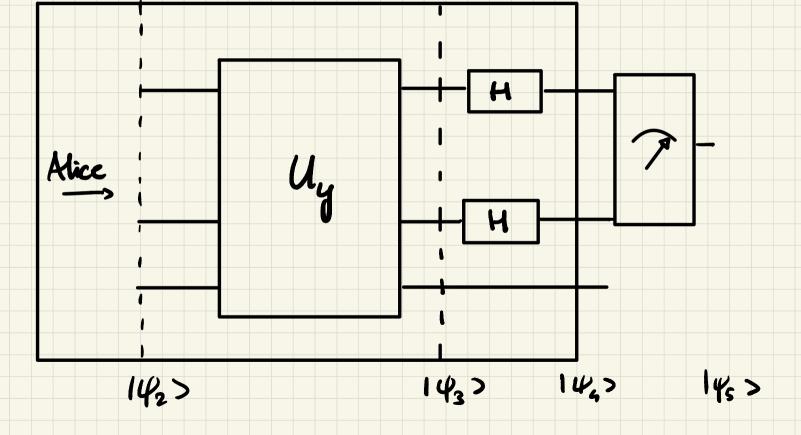
So Uz (10> & 10>-11>) $= (b) \otimes \frac{|x_b> - |\overline{x_b}>}{\sqrt{2}}$ = (16) $\otimes \frac{10) - 11}{\sqrt{2}}$ if $x_{b} = 0$ $(b) \otimes \frac{|n\rangle - |0\rangle}{\sqrt{2}} = -|b\rangle \otimes \frac{|0\rangle - |n\rangle}{\sqrt{2}} \text{ if } x_{b} = 1$ $= (-1)^{2_{b}} \cdot |b\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} \qquad (same magic as) \\ (ast time)$

This gives $|\psi_2\rangle = U_2 |\psi_1\rangle = \frac{1}{m} \sum_{0 \le b \le n-1} U_p(|b\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ $= \frac{1}{\sqrt{n}} \sum_{0 \le b \le n-1} (-1)^{x_b} \cdot |b\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

Then Mice transmits this state 142> to Bob:

Mis amants to transmitting log_n (+1) qu'ets.

Then Bob uses the following crant:



. The action of the gate Uy is:

Uy(16>@12>)=16>@12@4.>

so $H_{y}(1b) \otimes \frac{10>-11>}{\sqrt{2}} = (-1)^{4} \cdot 1b \otimes \frac{10>-11>}{\sqrt{2}}$

(some computation as before)

and

 $|\psi_3\rangle = \langle \psi_1 | \psi_2 \rangle = \frac{1}{\sqrt{n}} \sum_{0 \le b \le n-1}^{\infty} (-1)^{\infty_b + \psi_b} \cdot | b > \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

. Finally: 144>=(H& &I)143>

$= \frac{1}{\sqrt{n}} \sum_{0 \le b \le n-1} (-1)^{2_b + \frac{y_b}{y_b}} H^{\otimes k} |b > \otimes \frac{10 > -11 >}{\sqrt{2}}$

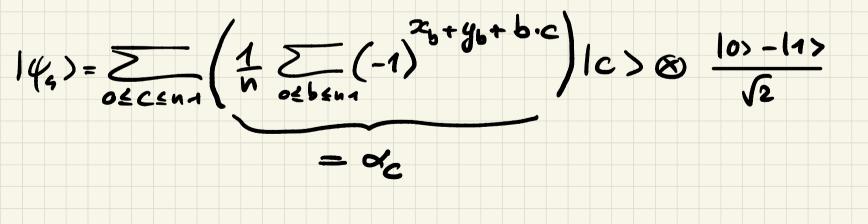
H&k 16> = H 16,> & ... & H16k-1>

and $H|b_{j}\rangle = \frac{1}{\sqrt{2}} \sum_{C_{j} \in \{0,1\}}^{(-1)^{b_{j}}G_{j}} |C_{j}\rangle$ So $H^{\otimes k}|b\rangle = \frac{1}{2^{k/k}} \sum_{C_{0} \cdot C_{k,1} \in \{0,1\}}^{(-1)^{b_{0}}C_{0} + \dots + b_{k,1}C_{k-1}} |C_{0} \cdot C_{k,1}\rangle$

In short-hand notation:

$H^{\otimes k} |b\rangle = \frac{1}{\sqrt{n}} \sum_{0 \in C \le N-1}^{b \cdot C} |C\rangle$

where b.c := boco + bici+...+ bk. Ck., Then



When measuring the first k qubits of 14%, Bob obtains state IC> with

probability $|\sigma_c|^2 = |\frac{1}{n} \sum_{0 \le b \le n} (-1)^{x_{b} + y_{b} + b - c}|^2$

For (c)=10...0), we obtain:



$\varsigma \cdot If x = y$, then $|v_0|^2 = 1$

 $(Tf d_H(x,y) = \frac{n}{2}, Hen |\alpha_0|^2 = 0$

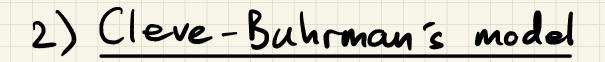
(cf remark a feu pages backwards)

So Bob concludes that x=y if he observes

the state o and that $d_{H}(x,y) = \frac{n}{2}$ otherwise

(and he can transmit this are-bit info to klice).

And recall that only k= log_ n gubits have been exchanged.



Still for the same problem (i.e. distinguishing

between x = y and $d_{\mu}(x, y) = \frac{n}{2}$, we

suppose nou that Alice & Bob own each

k=logzn gubits which are entangled at

the start: $|(l_{1}) = \frac{1}{2^{k/2}} \sum_{b_{0} \dots b_{k-1} \in \{0,1\}} |b_{0} \dots b_{k-n}\rangle_{A} \otimes |b_{0} \dots b_{k-n}\rangle_{B}$

(NB: The previous state is nothing but the) tensor product of le Bell states!)

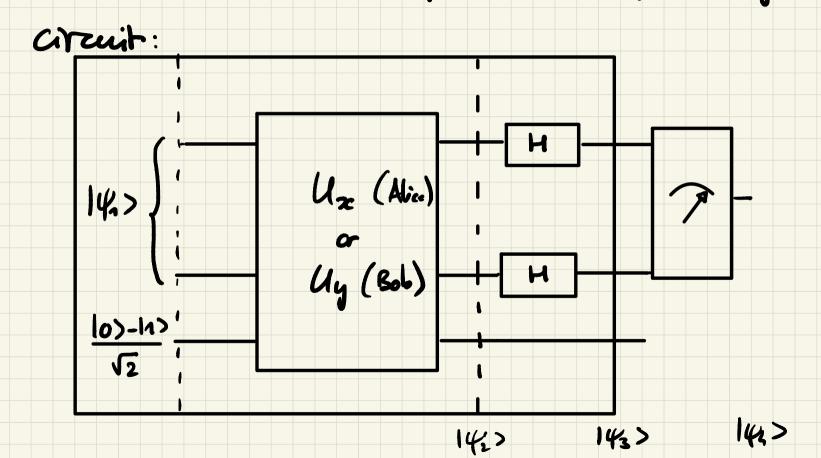
The question is now: how many classical

bits need Alice & Bob exchange M

order to decide between the two

alternatives?

Alice and Bob use separately the following

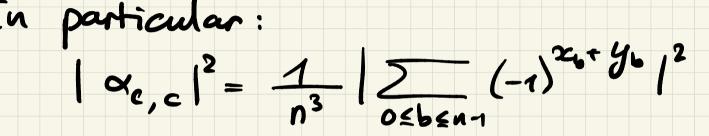


 $|\mathcal{U}_{2}\rangle = \frac{1}{\ln} \sum_{0 \le b \le n-1} \mathcal{U}_{z}(|b\rangle_{A} \otimes \frac{|0\rangle - |n\rangle}{\sqrt{2}}) \otimes \mathcal{U}_{y}(|b\rangle_{B} \otimes \frac{|0\rangle - |n\rangle}{\sqrt{2}})$ $= \frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n+1}^{\infty} (-1)^{\infty_{b}+y_{b}} |b>_{A} \otimes \frac{|o>-h>}{\sqrt{2}} \otimes |b>_{B} \otimes \frac{|o>-h>}{\sqrt{2}} \otimes |b>_{B} \otimes \frac{|o>-h>}{\sqrt{2}}$ After the passage through the Hadamard gates: (forget the analla bits) $|4y_{3}\rangle = \frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n+1}^{\infty} (-1)^{\infty_{b}+y_{b}} H^{\otimes k} |b>_{A} \otimes H^{\otimes k} |b>_{B}$

As before, $H^{\otimes k}(b)_{A} = \frac{1}{\sqrt{n}} \sum_{0 \le c \le n \cdot 1} (-1)^{b \cdot c} (c)_{A}$ and $H^{\otimes k}(b)_{g} = \frac{1}{\sqrt{n}} \sum_{\substack{o \leq d \in n \cdot 1 \\ o \leq d \leq n \cdot 1 \\ e \leq d \in$ So after the measurement on both sides, the joint probability that Alice sees 102, and Bob sees ldz is lorc, dl2.

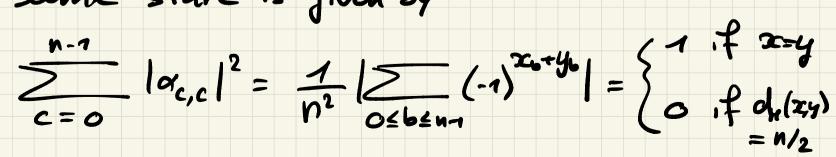
And $|\sigma_{c,d}|^2 = \frac{1}{N^3} \left| \sum_{0 \le b \le N-1} (-1)^{x_b + y_b + b \cdot c + b \cdot d} \right|^2$

In particular:



So the probability that Alice & Bob dosence the

same state is given by



So after having performed both their

measurements, Alice (e.g.) sends to

Bob k = log_n classical bits describing

her doserved state 1c>. If this

state is equal to Ids, then x=y;

otherwise, this means $d_{H}(x,y) = \frac{n}{2}$.