Quantum conputation: lecture 4

- Communication cauplexity: dassical setup
- Quantum communication complexity:
- Yao's model
- Cleve-Buhrman's model
- Dishributed Deutsch-Josza's algarithon

Communication complexity
Alice knows a vector $x \in\{0,1\}^{n}$
Bob knows a vector $y \in\{0,1\}^{n}$
They would like to compute together the value of $f(x, y)$, where $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow \mathbb{R}$ is same f_{n}.
Deff: communication complexity $=$ minimum number of bins that Alice and Bob need to exchange in order to compute $f(x, y)$.

Example: $f(x, y)=\operatorname{DisI}(x, y)$

$$
=1 \text { ff } \forall i=1 . n, x_{i}=0 \text { or } y_{i}=0
$$

$\Rightarrow \Omega(n)$ classical bits (ie., at least order n bits) need to be exchanged in this case.
But with qu ibis, the situation is different...

1) Mao's model

Assume simply that Alice and Bob are allowed to exchange quits. How many of them are needed?
Particular problem:
(= Hamming distance)
Let $d_{H}(x, y)=\#\left\{1 \leq i \leq n: x_{i} \neq y_{i}\right\}$ and assume we know in advance that either $x=y$ or $\quad d_{H}(x, y)=\frac{n}{2}$ (ie. $d_{\mu}(x, y)=0$)

Classically, Alice \& Boo need to exchange $\left.\Gamma \frac{n+1}{2}\right\rceil$ bits, in the worst case, in order to decide between these two alternatives.

We will see belau that only $O\left(\log _{2} n\right)$ quilts suffice.

Two remarks:

- For a reason that will become clear in a minute, we will wite $\left\{\begin{array}{l}x=\left(x_{0} . . x_{n-1}\right) \\ y=\left(y_{0} \ldots y_{n-1}\right)\end{array}\right.$ instead of $\left\{\begin{array}{l}x=\left(x_{1} \ldots x_{n}\right) \\ y=\left(y_{1} \ldots y_{n}\right)\end{array}\right.$
- Observe that:

$$
\begin{cases}x=y \text { ff } & f(x, y)=\frac{1}{n} \sum_{i=0}^{n-1}(-1)^{x_{i}+y_{i}}=1 \\ d_{H}(x, y)=\frac{n}{2} & \text { iff } f(x, y)=\frac{1}{n} \sum_{i=0}^{n-1}(-1)^{x_{i}+y_{i}}=0\end{cases}
$$

Distributed Deutsch-Dosza's algorithm Alice designs first the following circuit:

Again, let us compute the states at the various stages:

$$
\begin{aligned}
& \cdot\left|\psi_{0}\right\rangle=\underbrace{|0\rangle \otimes \otimes|0\rangle}_{k \text { Ames }} \otimes|1\rangle=|0, \ldots, 0\rangle \otimes|1\rangle \\
& \cdot\left|\psi_{1}\right\rangle=H^{\otimes(k+1)}\left|\psi_{0}\right\rangle=H|0\rangle \otimes \ldots \otimes H|0\rangle \otimes H|1\rangle \\
&=\frac{|0\rangle+11\rangle}{\sqrt{2}} \otimes \ldots \frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle-11\rangle}{\sqrt{2}} \\
&=\frac{1}{2^{k / 2}} \sum_{b_{0} \ldots b_{k, 1}}\{[0,0\} \\
&\left|b_{0} \ldots b_{k-1}\right\rangle \otimes \frac{|0\rangle-11\rangle}{\sqrt{2}}
\end{aligned}
$$

$b_{0} \ldots b_{k \cdot n}$ encodes a position $0 \leq b \leq 2^{k}-1=n-1$

$$
\Rightarrow\left|\varphi_{1}\right\rangle=\frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n-1}|b\rangle \text { (e) } \frac{|0\rangle-|n\rangle}{\sqrt{2}}
$$

in shart-hand notation

- gate U_{x} : its action on basis elements is given by:

$$
U_{x}(|b\rangle \otimes|z\rangle)=|b\rangle \otimes\left|z \oplus x_{6}\right\rangle
$$

$$
\begin{aligned}
& \text { So } U_{x}\left(|b\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
& =|b\rangle \otimes \frac{\left|x_{b}\right\rangle-\left|\bar{x}_{b}\right\rangle}{\sqrt{2}} \\
& =\left\{\begin{array}{l}
|b\rangle \otimes \frac{|0\rangle-|\tau\rangle}{\sqrt{2}} \quad \text { if } x_{b}=0 \\
|b\rangle \otimes \frac{|1\rangle-|0\rangle}{\sqrt{2}}=-|b\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}} \text { if } x_{b}=1
\end{array}\right. \\
& =(-1)^{x_{b}} \cdot|b\rangle \otimes \frac{|0\rangle-11\rangle}{\sqrt{2}} \quad\binom{\text { same magic as }}{\text { last time }}
\end{aligned}
$$

This gives

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =U_{x}\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n-1} U_{f}\left(|b\rangle \otimes \frac{(0\rangle-11\rangle}{\sqrt{2}}\right) \\
& =\frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n-1}(-1)^{x_{b}} \cdot|b\rangle \otimes \frac{|0\rangle-11\rangle}{\sqrt{2}}
\end{aligned}
$$

Then Alice transmits this state $\left|\psi_{2}\right\rangle$ to Bob: this amounts to transmitting $\log _{2} n(+1)$ quilts.

Then Bob uses the following crank:

-The action of the gate U_{y} is:

$$
\begin{gathered}
U_{y}(|b\rangle \otimes|z\rangle)=|b\rangle \otimes\left|z \oplus y_{b}\right\rangle \\
\text { so } U_{y}\left(|b\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)=(-1)^{y_{b}} \cdot|b\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{gathered}
$$

(same computation as before)
and

$$
\left|\psi_{3}\right\rangle=U_{y}\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{n}} \sum_{0 \leqslant b \leq n-1}(-1)^{x_{b}+y_{l}} \cdot|b\rangle \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

- Finally: $\left|\psi_{4}\right\rangle=\left(H^{\otimes k} \otimes I\right)\left|\psi_{3}\right\rangle$

$$
=\frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n-1}(-1)^{x_{0}+y_{b}} H^{\otimes k}|b\rangle \otimes \frac{|0\rangle-(1\rangle)}{\sqrt{2}}
$$

where

$$
H^{\otimes k}|b\rangle=H\left|b_{0}\right\rangle \otimes \ldots \otimes H\left|b_{k-1}\right\rangle
$$

and $H\left|b_{j}\right\rangle=\frac{1}{\sqrt{2}} \sum_{c_{j} \in\{0,13}(-1)^{b_{j} c_{j}}\left|c_{j}\right\rangle$

$$
\text { so } H^{\otimes k}|b\rangle=\frac{1}{2^{k^{\prime} / 2}} \sum_{c_{0} \ldots c_{k-1} \in\left\{a_{1},\right\}}(-1)^{b_{c_{0}}+\cdots b_{k-1} \cdot c_{k-1}}\left|c_{0} \ldots c_{k-1}\right\rangle
$$

In shart-hand notation:

$$
H^{8 k}|b\rangle=\frac{1}{\sqrt{n}} \sum_{0 \leqslant c \leq n-1}(-1)^{b \cdot c}|c\rangle
$$

where $b \cdot c:=b_{0} c_{0}+b_{1} c_{1}+\ldots+b_{k-1} c_{k-1}$. Then

$$
\left|\psi_{n}\right\rangle=\sum_{0 \leq c \leq n-1}(\underbrace{\left.\frac{1}{n} \sum_{0 \leq b \leq n-1}(-1)^{x_{b}+y_{b}+b \cdot c}\right)|c\rangle \otimes \frac{|0\rangle-(1\rangle\rangle}{\sqrt{2}}}_{=\alpha_{c}}
$$

When measuring the first k quits of $\left|\psi_{n}\right\rangle$, Bob obtains state $|c\rangle$ with probability $\left|\alpha_{c}\right|^{2}=\left|\frac{1}{n} \sum_{0 \leq b \leq n-1}(-1)^{x_{b}+y_{b}+b \cdot c}\right|^{2}$ For $|c\rangle=|0 \ldots 0\rangle$, we obtain:

$$
\left|\alpha_{0}\right|^{2}=\left|\frac{1}{n} \sum_{0 \leq b \leq n-1}(-1)^{x_{b}+y_{b}}\right|^{2}
$$

If $d_{H}(x, y)=\frac{n}{2}$, then $\left|\alpha_{0}\right|^{2}=0$ (cf remark a few pages backwards)
So Bob concludes that $x=y$ if he dosenes the state 0 and that $d_{H}(x, y)=\frac{n}{2}$ denise (and he can transeunt this are-bit info to Alice). And recall that only $k=\log _{2} n$ quits have been.
2) Cleve-Buhrman's model

Still for the same problem (ie. distinguishing between $x=y$ and $\left.d_{H}(x, y)=\frac{n}{2}\right)$, we suppose now that Alice \& Bob own each $k=\log _{2} n$ quits which are entangled at the start:

$$
\left|\psi_{1}\right\rangle=\frac{1}{2^{k / 2}} \sum_{b_{0} \ldots b_{k+1} \epsilon\{0,1\}}\left|b_{0} \ldots b_{k-1}\right\rangle_{A} \otimes\left|b_{0} \ldots b_{k-.1}\right\rangle_{B}
$$

$\binom{$ NB: The previous state is nothing but the }{ tensor product of k Bell states! }
The question is nav: how many classical bits need Alice \& Bob exchange in order to decide between the two alternatives?

Alice and Bob use separately the following circuit:

$$
\begin{aligned}
& \left.\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n \cdot 1} u_{x}\left(|b\rangle_{A} \otimes \frac{|0\rangle-|n\rangle}{\sqrt{2}}\right)_{\otimes} U_{y}(b\rangle_{B} \otimes \frac{|0\rangle-\mu\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n-1}(-1)^{x_{t}+y_{b}}|b\rangle_{A} \otimes \frac{|0\rangle-(1)}{\sqrt{2}} \&|b\rangle_{B} \otimes \frac{|0\rangle-(1)}{\sqrt{2}}
\end{aligned}
$$

After the passage through the Hadamard gates: (forget the an ally bits)

$$
\left|\psi_{3}\right\rangle=\frac{1}{\sqrt{n}} \sum_{0 \leq b \leq n+1}(-1)^{x_{b}+y_{b}} H^{\otimes k}|b\rangle_{A} \otimes H^{\otimes k}|b\rangle_{B}
$$

As before, $H^{\otimes k}|b\rangle_{A}=\frac{1}{\sqrt{n}} \sum_{o \leq c \leqslant n \cdot 1}(-1)^{b \cdot c}|c\rangle_{A}$ and $\left.H^{\Delta k}(b)_{B}=\frac{1}{\sqrt{n}} \sum_{0 \leq d<n \cdot 1}(-1)^{b \cdot d} \right\rvert\, d>_{B}$, so
 So after the measurement on both sides, the joint probability that Alice sees $|c\rangle_{A}$ and Bob sees $\mid d_{\beta}$ is $\left|\alpha_{c, d}\right|^{2}$.

And $\left|\alpha_{c, d}\right|^{2}=\frac{1}{n^{3}}\left|\sum_{0 \leq b \leq n-1}(-1)^{x_{b}+y_{b}+b \cdot c+b \cdot d}\right|^{2}$
In particular:

$$
\left|\alpha_{c, c}\right|^{2}=\frac{1}{n^{3}}\left|\sum_{0 \leq b \leq n-1}(-1)^{x_{b}+y_{b}}\right|^{2}
$$

So the probability that Alice \& Bob deserve the same state is given by

$$
\sum_{c=0}^{n-1}\left|\alpha_{c, c}\right|^{2}=\frac{1}{n^{2}}\left|\sum_{0 \leq b \leq n-1}(-1)^{x_{0}+y_{0}}\right|= \begin{cases}1 & \text { if } x-y \\ 0 & \text { if } \\ d_{1}(x, y) \\ =n / 2\end{cases}
$$

So after having performed both their measurements, Alice (e.g.) sends to Bob $k=\log _{2} n$ classical bits describing her doserved state $|c\rangle$. If this state is equal to $|d\rangle$, then $x=y$; otherwise, this means $d_{H}(x, y)=\frac{n}{2}$.

