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Astrophysics IV : Stellar and galactic dynamics

Solutions
Problem 1 :
With N = 1000, R=50pc, by is :
2R
bgo = W = 0.1pC, (1)
InA=1In (£> =6 (2)
boo

The typical velocity is :

N
V= \/GTm%’O.?)km/s (3)

and the crossing time is thus :

leross = — = 0.16 Gyr (4)
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Finally, the relaxation time becomes :

N
tre ax — S . tcross =24
: 8In A Giyr (5)

Consequently, the system cannot be assumed to be collision-less over a Hubble time
(~ 10 Gyrs).

If the system is embedded in a massive dark matter halo and has velocity dispersion
of about 4km/s, we can write the typical velocity as :

V:4km/s:\/XG]]%Vm, (6)

where we have introduced the constant x equal to the ratio between the total mass
(including the dark matter mass) and the mass of the stars. From the first part, we
have that

N
GNM () 3 kem /s (7)
R
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Now, from the lecture, we know that the net change of AV? for one crossing of the

system is :
Gm
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Replacing R with Eq. 6 gives :

Following the same procedure than in the lecture, we finally get :

N 2
trelax = —X ' tcross-
InA

With t.0s being now :
R
tcross - V = 0.012 GyI‘

and x? = 31000, we finally get :

Nx* R _
oo = g * 7 = 7800 Gy,

(9)
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(12)
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An ultra-faint that includes dark matter can be considered a collision-less over a

Hubble time.

Problem 2 :

Lets define the following Lagrangian, a function of the potential ¢ and its gradient

Vo : .
L(6,V0,7) = s—=(VO) + ¢,

We associate to this Lagrangian an action :

Sl] = / BiL <¢, Vo, f)

Extremalizing this action amounts to solving the Fuler-Lagrange equation :

oL o L
-~ v T = 9
0P OV
Plugging the Lagrangian (Eq. 14) to this equation, we obtain :
Vi =471G p.

which is nothing else than the Poisson equation.

Interpretation : What is the physical meaning of the Lagrangian ?
From the potential theory, the total potential energy of a system is :

W = %/dgfp(f) O(F).
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(14)



or
1

W = —SWG/d?’f(%)? (19)

The physical meaning of L(¢, V}b, ¥) is now obvious and is nothing else than the total
potential energy written as W = —W + 2W. Thus, the variational principle answers
the following question : For a given density field, what is the relationship between the
density and the potential that render the total potential energy extremum ¢ The answer
is : The Poisson equation.

Problem 3 :

Using the following relations for spherical systems, derived during the lectures :
the Poisson equation in Spherical coordinates :

1d [ ,dd
5T (r 5) =47 G p(r) (20)

the mass inside a radius 7 due to a spherical distribution of matter p(r’) :

M(r) = 4x / dr' 1" p(r'), (21)
0
the gravitational field due to a spherical distribution of matter p(r’)
. GM(r) _
i) = 10 g, (22)

the potential due to a spherical distribution of matter p(r’)
G M(r)

r

O(r) =

—47TG/ p(r")r'dr’, (23)

the gradient of the potential due to a spherical distribution of matter p(r’)

d® G M(r)
dr 2

(24)

we can express p(r), ®(r), M(r) and 92 as a function of respectively p(r), ®(r), M(r)
and 42 :
dr

p(r)

— as a function of p(r) : -

— as a function of ®(r) : use the Poisson equation Eq. (20)

— as a function of M(r) : use Eq. (21)

— as a function of $ : compute the first derivative of M(r) from Eq. (21)
o(r)

— as a function of p(r) : use Eq. (23)

— as a function of ®(r) : -

— as a function of M(r) : integrate Eq. (24)
— as a function of $2 : integrate ®(r)



do
dr

as a function of p(r) : use Eq. (21)
as a function of ®(r) : use Eq. (24)
as a function of M (r) : -

as a function of $2 : use Eq. (24)

as a function of p(r) : use Eq. (24) and express M(r) with Eq. (21)
as a function of ®(r) : compute the first derivative of ®(r)
as a function of M (r) : use Eq. (24)

as a function of i—f D -



