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Astrophysics IV : Stellar and galactic dynamics
Solutions

Problem 1 :

With N = 1000, R=50 pc, b90 is :

b90 =
2R

N
= 0.1 pc, (1)

ln Λ = ln

(
R

b90

)
∼= 6 (2)

The typical velocity is :

V =

√
GNm

R
∼= 0.3 km/s (3)

and the crossing time is thus :

tcross =
R

V
= 0.16Gyr (4)

Finally, the relaxation time becomes :

trelax =
N

8 lnΛ
· tcross = 2.4Gyr (5)

Consequently, the system cannot be assumed to be collision-less over a Hubble time
(∼ 10Gyrs).

If the system is embedded in a massive dark matter halo and has velocity dispersion
of about 4 km/s, we can write the typical velocity as :

V = 4km/s =

√
χGNm

R
, (6)

where we have introduced the constant χ equal to the ratio between the total mass
(including the dark matter mass) and the mass of the stars. From the first part, we
have that √

GNm

R
= 0.3 km/s (7)

thus :

χ =

(
4 km/s

0.3 km/s

)2

∼= 177 (8)
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Now, from the lecture, we know that the net change of ∆V 2 for one crossing of the
system is :

∆V 2 = 8N

(
Gm

V R

)2

log(Λ) (9)

Replacing R with Eq. 6 gives :

∆V 2 = 8

(
V 2

Nχ2

)
log(Λ). (10)

Following the same procedure than in the lecture, we finally get :

trelax =
Nχ2

8 lnΛ
· tcross. (11)

With tcross being now :

tcross =
R

V
= 0.012Gyr (12)

and χ2 ∼= 31′000, we finally get :

trelax =
Nχ2

8 lnΛ
· R
V

∼= 7800Gyr. (13)

An ultra-faint that includes dark matter can be considered a collision-less over a
Hubble time.

Problem 2 :

Lets define the following Lagrangian, a function of the potential ϕ and its gradient
∇⃗ϕ :

L(ϕ, ∇⃗ϕ, x⃗) =
1

8π G
(∇⃗ϕ)2 + ρ ϕ, (14)

We associate to this Lagrangian an action :

S[ϕ] =
∫

d3x⃗L
(
ϕ, ∇⃗ϕ, x⃗

)
. (15)

Extremalizing this action amounts to solving the Euler-Lagrange equation :

∂L
∂Φ

− ∇⃗ · ∂⃗L
∂∇⃗ϕ

= 0, (16)

Plugging the Lagrangian (Eq. 14) to this equation, we obtain :

∇⃗2ϕ = 4π Gρ. (17)

which is nothing else than the Poisson equation.
Interpretation : What is the physical meaning of the Lagrangian ?
From the potential theory, the total potential energy of a system is :

W =
1

2

∫
d3x⃗ ρ(x⃗)ϕ(x⃗). (18)
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or
W = − 1

8π G

∫
d3x⃗ (∇⃗ϕ)2. (19)

The physical meaning of L(ϕ, ∇⃗ϕ, x⃗) is now obvious and is nothing else than the total
potential energy written as W = −W + 2W . Thus, the variational principle answers
the following question : For a given density field, what is the relationship between the
density and the potential that render the total potential energy extremum ? The answer
is : The Poisson equation.

Problem 3 :

Using the following relations for spherical systems, derived during the lectures :
the Poisson equation in Spherical coordinates :

1

r2
d

dr

(
r2
dΦ

dr

)
= 4π Gρ(r) (20)

the mass inside a radius r due to a spherical distribution of matter ρ(r′) :

M(r) = 4π

∫ r

0

dr′ r′
2
ρ(r′), (21)

the gravitational field due to a spherical distribution of matter ρ(r′)

g⃗(r) = −GM(r)

r2
· e⃗r, (22)

the potential due to a spherical distribution of matter ρ(r′)

Φ(r) = −GM(r)

r
− 4πG

∫ ∞

r

ρ(r′)r′dr′, (23)

the gradient of the potential due to a spherical distribution of matter ρ(r′)

dΦ

dr
=

GM(r)

r2
, (24)

we can express ρ(r), Φ(r), M(r) and dΦ
dr

as a function of respectively ρ(r), Φ(r), M(r)

and dΦ
dr

:

ρ(r)
— as a function of ρ(r) : -
— as a function of Φ(r) : use the Poisson equation Eq. (20)
— as a function of M(r) : use Eq. (21)
— as a function of dΦ

dr
: compute the first derivative of M(r) from Eq. (21)

Φ(r)
— as a function of ρ(r) : use Eq. (23)
— as a function of Φ(r) : -
— as a function of M(r) : integrate Eq. (24)
— as a function of dΦ

dr
: integrate Φ(r)
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M(r)
— as a function of ρ(r) : use Eq. (21)
— as a function of Φ(r) : use Eq. (24)
— as a function of M(r) : -
— as a function of dΦ

dr
: use Eq. (24)

dΦ
dr

— as a function of ρ(r) : use Eq. (24) and express M(r) with Eq. (21)
— as a function of Φ(r) : compute the first derivative of Φ(r)
— as a function of M(r) : use Eq. (24)
— as a function of dΦ

dr
: -
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