EPFL - Printemps 2023	Prof. Zs. Patakfalvi
Anneaux et Corps	Exercices
Série 6	3 avril 2023

Les exercices indiqués par une étoile \star sont optionnels.

Exercice 1.

Entiers de Gauss.

- 1. L'anneau $\mathbb{Z}[i]$ est euclidien avec $N(a+ib) = |a+ib|^2$. (Exemple 3.7.4.(3)) Pour $a, b \in \mathbb{Z}[i], a \neq 0$ on appelle une égalité de la forme b = aq + r, avec $q, r \in \mathbb{Z}[i]$ et N(r) < N(a) une division avec reste. Effectuer la division avec reste de 5 + 5i par 4 + 2i et montrer que quotient et reste de la division dans $\mathbb{Z}[i]$ ne sont pas uniques.
- 2. Les entiers de Gauss 2, 3 et 5 sont-ils irréductibles dans $\mathbb{Z}[i]$? Et 2i et 2-3i?
- 3. Montrer que le quotient $\mathbb{Z}[i]/(3)$ est un corps de cardinalité 9.
- 4. \star Soit p un nombre premier. Montrer que les énoncés suivants sont équivalents.
 - (a) Il existe $a, b \in \mathbb{Z}$ avec $p = a^2 + b^2$.
 - (b) p = 2 ou alors $p \equiv 1 \mod 4$.

Exercice 2.

Entiers d'Eisenstein. Soit $\omega = e^{\frac{2\pi i}{3}}$ et $\mathbb{Z}[\omega]$ l'anneau des entiers d'Eisenstein.

- 1. Montrer que $N(a+b\omega)=a^2-ab+b^2$ coïncide avec le module au carré dans le plan complexe de $a+b\omega$.
- 2. Montrer que $N(a+b\omega)=a^2-ab+b^2$ munit $\mathbb{Z}[\omega]$ d'une fonction euclidienne. On pourra par exemple montrer que le point milieu d'une maille du réseau $(a+b\omega)$ se trouve à une distance strictement plus petite que $\sqrt{N(a+b\omega)}$ de chacun des quatre sommets de cette maille.
- 3. Trouver les éléments inversibles de $\mathbb{Z}[\omega]$ (quelle est leur norme?).

Exercice 3.

L'anneau $\mathbb{Z}[i\sqrt{5}]$.

- 1. Montrer que le polynôme $3 + 2t + 2t^2$ est irréductible sur $\mathbb{Z}[i\sqrt{5}]$, mais pas sur le corps des fractions de $\mathbb{Z}[i\sqrt{5}]$
- 2. **Généralisation.** Soient a, b, c, d des éléments irréductibles non associés d'un anneau commutatif et intègre A tels que ab = cd. Calculer (a + ct)(b + ct) et conclure que le polynôme $d + (a + b)t + ct^2$ est irréductible sur A, mais pas sur son corps des fractions K.
- 3. Montrer que la norme n'est pas une fonction euclidienne sur $\mathbb{Z}[i\sqrt{5}]$.

Exercice 4.

En s'inspirant de l'exemple 3.7.4.(3), montrer que $\mathbb{Z}[i\sqrt{2}]$ est Euclidien.

Exercice 5.

Idéaux dans un anneau de polynômes.

- 1. Décrire tous les idéaux premiers et tous les idéaux maximaux de $\mathbb{C}[t]$ et de $\mathbb{R}[t]$. (Without proof, we note that irreducible polynomials of degree higher than 2 do not exist in $\mathbb{R}[t]$.)
- 2. Soit K un corps et $a \in K$. Montrer que (t a) est un idéal premier de K[s, t], mais non maximal.

- 3. Montrer que l'anneau quotient $\mathbb{C}[s,t]/(s-t^2)$ est principal
- 4. **Polynôme d'interpolation de Lagrange.** Soit K un corps, a_1, \ldots, a_n des éléments de K distincts et $b_1, \ldots, b_n \in K$. Montrer qu'il existe un polynôme $f \in K[t]$ de degré au plus n-1 tel que $f(a_i) = b_i$ pour tout $1 \le i \le n$.

Exercice 6.

Trouver tous les idéaux de $\mathbb{Z}[i]$ qui contiennent l'idéal (5) et tous les idéaux de $\mathbb{Z}[i]$ qui contiennent l'idéal (2).

Exercice Bonus (Une équation diophantienne).

L'objectif de cet exercice est de trouver toutes les paires $(x,y) \in \mathbb{Z}^2$ telles que $x^2 + 2 = y^3$. Nous allons procéder ainsi.

Fixons $x, y \in \mathbb{Z}$ tel que $x^2 + 2 = y^3$.

- 1. Montrer que 2 ne divise pas x.
- 2. Montrer que pgdc $(x+i\sqrt{2},x-i\sqrt{2})=1$ dans l'anneau $\mathbb{Z}[i\sqrt{2}].$
- 3. Montrer qu'il existe $z \in \mathbb{Z}[i\sqrt{2}]$ tel que $x+i\sqrt{2}=\pm z^3$.
- 4. Trouver toutes les solutions de l'équation $x^2 + 2 = y^3$ à valeur dans \mathbb{Z} .