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What you will learn in this class

Advantages and costs of learning in evolution

How learning can help and guide evolution

How evolution can help learning

Remember what you learned? Darwinian vs Lamarckian evolution
The Baldwin effect

Evolution of learning algorithms

Evolution of reward-based learning with neuro-modulation




Fvolutionary advantages and costs of learning

Evolution and learning are both adaptive mechanisms, but have important differences:
» They take place at different time scales

« They use different processes

« Evolution operates on the genotype, learning operates on the phenotype

ADVANTAGES of learning COSTS of learning
It can capture environmental change that It implies a delay in the ability of improving
occurs faster than generation time fitness
It can help and guide evolution It can learn things that are wrong or delay
fitness improvement
It can enable shorter genotypes It requires tutoring, energy, may imply physical
damage
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How learning can help and guide evolution inton and Nowian, 1987)
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As a consequence, the fitness landscape
becomes smoother and displays a
“gradient” towards peaks of high fitness,
resulting in faster and better evolution
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How evolution can help learning

Find initial network weights for better and faster learning

Find good set of learning hyperparameters (initialization range, learning rate, momentum, etc.)
Find suitable learning algorithms

Find network morphology for better and faster learning

Simplify learning problem by co-evolving suitable sensors and bodies
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Darwinian vs. Lamarckian evolution

Darwinian evolution Lamarckian evolution
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Phenotypic changes cannot be transmitted to the DNA.  Phenotypic changes can be transmitted to the DNA.
Learned abilities cannot be inherited by offsping Learned abilities can be inherited by offspring.

(No biological evidence for Lamarckian evolution)

In static environments, Lamarckian evolution can produce better and faster results [Lund, 1999].

In dynamic environments, Lamarckian evolution can get stuck in local minima [Sasaki & Tokoro,
1997, 1999].
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The Baldwin effect

The Baldwin effect [Baldwin, 1896; Morgan, 1896; Waddington, 1942] describes a phenomenon whereby
learned features can indirectly transfer to the DNA. It has been reported also in evolution of artificial
systems [Mayley, 1997; Ackley and Littman, 1991]. Here is how it works:

1- Learning is good for survival and thus is selected and maintained by evolution

2- But learning has evolutionary costs

3- Therefore, individuals with mutations that are primitive sketch of abilities that would normally be
learned, have a selective advantage with respect to those that must learn them.

4- Gradually, individuals are born with fully-fledged abilities that had to be learned in early generations
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Fvolution of Learning Algorithms

Genotype encodes variations of Hebbian learning rules for each connection or each neuron
Connection weights of newborn individuals are always initialized to random values (no Baldwin effect)
Neural network learns during life time using learning rules described in its genotype

Genetically-determined Adaptive
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- A neural network can use different learning rules in different parts
- There is no need of teacher or reinforcement learning, no gradient descent and local minima
x-l,_lndividuals are selected for their ability to learn, not simply to solve a specific problem
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Online Adaptation

map map

In addition, they perform well in different environments by developing suitable
strategies. Contrary to conventional models, several synapses continue to
change, but the overal pattern of change is dynamically stable.

Test in new environment Continuously changing Dynamic stability

1 synapses
e ynap
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A Sequential Task

A Khepera robot is evolved to switch on a light and go under the light, but this

sequence of actions is not directly rewarded by the fitness function.
neurons (t-1)

Fitness= time_gray_light / total_time

synapse

evolution
of rules

evolution
of weights
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Robustness to Color Change

Evolved adaptive individuals can cope with new colours of the walls whereas

genetically-determined individuals fail.
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Genetically-determined Adaptive

Similarly, evolved adaptive
individuals transfer smoothly
from simulated to real world.
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Robustness to Layout Modification

Evolved adaptive individuals can cope with new positions of the two
landmarks whereas genetically-determined inviduals cannot.
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Neuromodulation of synaptic plasticity
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Bailey, M. Giustetto, Y.-Y. Huang, R. D. Hawkins, and E. R. Kandel. (2000) Is heterosynaptic modulation
essential for stabilizing Hebbian plasticity and memory? Nature Reviews Neuroscience, 1(1):11-20




Reward-based behavioural choice

. Nectar of the high reward- | Nectar of the low reward-
Scenario | . ;
ing flower ing flower
1 0.8ul 0.3ul
1.0l with P=0.2
2 L 0.04l with P=0.8
3 1.6l with P=0.75 0.8l with P=0.75
0.0pl with P=0.25 0.0l with P=0.25
4 0.8ul with P=0.75 0.8l with P=0.25
0.0l with P=0.25 0.0pl with P=0.75

G Percentage of GREY colour Reward received
© © under the cone-view upon landing
Percentage of BLUE colour o ﬁt nessS = rewar dS
° J under the cone-view Landing signal
Yo Percentage of YELLOW colour
©  under the cone-view
\
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Fvolutionary discovery of modulated plasticity
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A. Soltoggio, P. Durr, C. Mattiussi and D. Floreano (2007) Evolving neuromodulatory topologies for
reinforcement learning-like problems, IEEE Congress on Evolutionary Computation, 2471-2478



Best evolved individual
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Learning dynamics

’ / , > Intensity of modulatory signal

Amount of reward at landing
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Reinforcement learning in the T-maze
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Look ma, no learning!

Trial 1 Trial 2
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The double T-maze
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A. Soltoggio; J. A. Bullinaria; C. Mattiussi; P. Durr; D. Floreano (2008) Evolutionary Advantages of
Neuromodulated Plasticity in Dynamic, Reward- based Scenarios. In Artificial Life XI, p. 569-576
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Evolution of reward-based learning
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A. Soltoggio; J. A. Bullinaria; C. Mattiussi; P. Durr; D. Floreano (2008) Evolutionary Advantages of
Neuromodulated Plasticity in Dynamic, Reward- based Scenarios. In Artificial Life XI, p. 569-576
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