MICRO-515: Evolutionary Robotics
Prof. Dario Floreano

Exercise 4: RoboGen Body-Brain Co-Evolution 2

Jan Petrs (jan.petrs@epfl.ch)
Alexander Dittrich (alexander.dittrich@epfl.ch)

Juliette Hars (juliette.hars@epfl.ch)

Goal

Use RoboGen to evolve robots able to solve more complex tasks. The evolved robot
must follow a signal, in this case a moving light, in the environment.

Learning objectives

o How to co-evolve controllers and morphologies for more complex tasks that
include sensor readings.

o How to use penalization in fithess functions.

o How to evolve robots capable of making the jump from simulation to reality,

i.e. how to avoid evolving robots that exploit some feature of the simulation
and therefore don’t work in the real world.


mailto:jan.petrs@epfl.ch
mailto:alexander.dittrich@epfl.ch
mailto:juliette.hars@epfl.ch

Getting Started

To get started, visit http://robogen.org/app and upload the files provided in Moodle into
Robogen2022/es4/.

Note: If you receive a “404 Error” ensure you access via “http://...” and not
“https://...”, as some browsers access URLs by default with secure HTTP.

Important:

e Remember, all data is being saved to a virtual file system within your web
browser. If you want to save anything for later use, be sure to download it to
your home directory!

e In Exercise 1, you were evolving a wheeled robot. In this and the following
exercises, you are not allowed to use wheels. So you have to come up with a
legged design for locomotion. The available parts are CoreComponent,
FixedBrick, ParametricJoint, PassiveHinge, ActiveHinge,

LightSensor, and IrSensor (if you specify ELlel:loleiI:EIG£I MBI when evolving
morphologies, these will be the parts that your robots will be composed of).

Core Component Fixed Brick
E 4 o0 6 F 3 o 0
(CoreComponent) (FixedBrick)

Parametric Bar Joint Passive Hinge Joint
(ParametricJoint) (PassiveHinge)

Active Hinge Joint
(ActiveHinge)

- Light Sensor

| 1 1 o
(LightSensor] )

L 0 [¢] 1 (analog)

Infrared Sensor
(IrSensor)



http://robogen.org/app

Exercise 4.1

You will now perform a body-brain evolution of a robot that can both locomote and
follow a light source.

First, if you try “Start a simulation” using es4/simConf.txt and es4/robot.txt.
You will see an example of an arena where a fixed light is placed. In simConf.txt
observe the two parameters:

IR YT ek B XL M EN RN - IR Used to add information on where the
light is placed. See the documentation on the RoboGen website for more
details.

- : this fitness function will try to minimize the distance
between the robot and the light.

If the light is always in the same position during evolution, it is possible that the robot
will just learn to move along a specific path rather than use its light sensors to detect
where the light source is and navigate towards it (overfitting). To avoid overfitting, you
should set up the evolution so that:

a. The robot begins from different starting positions by making a startPos.txt
file (remember to add to
simConf . txt).

b. Alternatively, change the scenario in simConf.txt to
A NETS T EIN NS GEN Rk, In this scenario, the light moves in a
different direction each time the simulator is started, so only robots that utilize
their light sensors will be able to chase it.

We aren’t quite ready to evolve a robot yet though, as it is actually very difficult to
evolve a robot for two different tasks simultaneously, e.g. the locomotion and light
following tasks in this example. We therefore suggest that you perform a multistep
evolution. Multistep evolution is usually performed when multiple distinct behaviors
should be evolved in a robot. As the name implies, multiple evolutionary runs are
performed in series, each step uses a different fitness function to evolve the robot for
one of the desired behaviors. At the end of each step, the best robot from an
evolutionary step is given as a .json file, which needs to be converted using
json_converter.py toa .txt file so it can be input as the starting point in the next
step of the evolution.

As an example, to perform two-step evolution:


http://robogen.org/docs/evolution-configuration/#Simulator_settings

1. Step: evolve the body and brain of a robot able to locomote and turn.
2. Step: now we have a robot body and brain from the Step 1 in
GenerationBest-X. json that can locomote. Before starting Step 2:
a. Convert GenerationBest-X. jsonto GenerationBest-X.txt using
json_converter.py.

http://robogen.org/docs/evolution-configuration) in evolConf . txt to
seed the Step 2 population with the body and brain from Step 1.
c. Set ELLLEREVEEIREIRR-(3dYl)l oYy in evolConf . txt to limit the body

evolution to adding light sensors only in Step 2.
Now evolve a robot able to follow a light thanks to the usage of light sensors in
the body and the relative adjustment of the NN controller.

You may see the fitness plateau after a certain number of generations. If this happens,
try the following:

e Keep the evolution running for more generations. Big improvements can
sometimes happen after 50-100 generations, even after the fithess seems to
have plateaued already.

e Explore the fitness landscape more, i.e. increase the population size, mutation
rate, crossover rate, or make the tournament size smaller.

e Improve the fitness function. For instance, modify the equation by changing
some of the terms or give weights to different terms in the existing fithess
function to change their relative importance.


http://robogen.org/docs/evolution-configuration

Exercise 4.2

Real sensor data usually includes some noise. In addition, physical phenomena that
are not modelled in the simulator may influence the real system, e.g. reflections,
different lights in the environment, or inaccurate sensors. Therefore, to make the
evolved robot generalizable when transferring the model from simulation to reality,
noise should be added to sensor readings in the simulator. Try to add noise of - to
the sensors and check if the performance is still good. If not, try an additional step of
the multistep evolution, where you perform a brain only evolution in the presence of
sSensor noise.

NOTE: See the documentation to add sensor noise.

Exercise 4.3

If your robot can follow the light when the terrain is flat, you could try to evolve a new
one using an arena with a movable light and a more challenging terrain of your
choosing.


http://robogen.org/docs/evolution-configuration/#Simulator_settings

