Quantum computation: lecture 9
Shoo's algorithm: conclusion
Reminder:
We are looking for the period $r \in\{1 . . N-1\}$ of a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as

$$
f(x)=a^{x} \bmod N
$$

where $a \in\{1 . . N-1\}$ is same fixed integer.

For this, we take $M=2^{m}$ for same integer $m \geq 1$ such that $M \geqslant N^{2}$ (justification later) and use Shar's quantum circuit with 2 m quits:

As seen last week, the output of the citunt is a number $y \in\{0 . . M-1\}$ such that

$$
\mathbb{P}(y \in I) \geqslant \frac{2}{5}
$$

where $I=\bigcup_{k=0}^{r-1} I_{k}, I_{k}=\left[k \cdot \frac{\Pi}{r}-\frac{1}{2}, k \cdot \frac{\Pi}{r}+\frac{1}{2}\right]$ ie. $\exists 0 \leq k \leq r-1$ st. $\left|y-k \cdot \frac{\Pi}{r}\right| \leq \frac{1}{2}$
let us divide by M : $\left|\frac{y}{\pi}-\frac{k}{r}\right| \leq \frac{1}{2 M}$

Here, the choice of $M \sim N^{2} \geqslant r^{2}$ matters, as this implies: $\left|\frac{y}{m}-\frac{k}{r}\right| \leq \frac{1}{2 r^{2}}$

Task: Find in an effective manner all rational approximations of the form $\frac{k}{r}$ that are at most $\frac{1}{2 r^{2}}$ away from the measured value $\frac{y}{\pi}$.

Parenthesis: continued fractions
Pick a real number, for example $\frac{263}{189}$
One-digit approximation: 1

$$
\begin{aligned}
\text { So } \frac{263}{189} & =1+\frac{74}{189}=1+\frac{1}{189 / 74} \\
\frac{189}{74} & =2+\frac{41}{74}=2+\frac{1}{74 / 41} \\
\text { So } \frac{263}{189} & =1+\frac{1}{2+\frac{1}{74 / 41}}
\end{aligned}
$$

This leads finally to $\frac{263}{189}=1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{4+\frac{1}{8}}}}}$
$\left(\frac{74}{41}=1+\frac{1}{41 / 33}, \frac{41}{33}=1+\frac{1}{33 / 8}, \frac{33}{8}=4+\frac{1}{8}\right)$
Please note $\frac{8}{1}=7+\frac{1}{1}$ so this could go an forever, but we choose the shortest development Note also that if the initial number is irrational then the development is infinite
Notation: $\frac{263}{189}=[1,2,1,1,4,8]$

Cawergents (toward $\frac{263}{189} \cong 1,391 \ldots$)

$$
\left\{\right.
$$

Le gendre: Let a be a real number Let p, q be so that $\left|\alpha-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$ Then $\frac{p}{q}$ is a convergent of α.
Algorithm:

- Given y, compute the continued fraction of $\frac{y}{17}$
- Lock at all cavergents: check if any of the denominators is a valid period. If yes, we are dare; if not, try again with andher measurement.

Note: As $\left|\frac{y}{\pi}-\frac{k}{r}\right| \leq \frac{1}{2 \pi^{2}}$, we know by legendre's lemma that $\frac{k}{r}$ must be a convergent of $\frac{y}{m}$, which justifies the previous algaithm!
Complexity: - computing the cawergents of $\frac{y}{M}$ is actually Euclid's algarithun for cauputing $\operatorname{gcd}(y, M)$: at most $O\left(\log _{2} M\right)=O(m)$ steps

- each division costs $O\left(\mathrm{~m}^{2}\right)$
$\Rightarrow O\left(m^{3}\right)$ complexity in total.

Cirmit for the QFT

$$
\begin{aligned}
& \text { QFT }|x\rangle=\frac{1}{2^{m / 2}} \sum_{y=0}^{2^{m}-1} e^{2 \pi i x y / 2^{m}}|y\rangle \\
& m=1: Q F T|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{\text { varix }}{2}}|1\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right)=H|x\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\pi i x}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{\pi i x}{2}}(1\rangle\right)
\end{aligned}
$$

Write $x=\left(x_{1}, x_{0}\right)=2 x_{1}+x_{0} \quad$ (bihary expansion)

$$
\begin{array}{rlr}
\Rightarrow \text { QFT }|x\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\pi i x_{0}}|1\rangle\right) & \left|\varphi_{0}\right\rangle \tag{0}\\
& \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\pi i x_{1}+\frac{\pi i x_{0}}{2}}|1\rangle\right\rangle & \left|\varphi_{1}\right\rangle
\end{array}
$$

SWAP gate:

This procedure generalizes to all values of m $\binom{$ see next }{ slides }
Circuit complexity:

- $3 m$ gates for the swap operations
- $m+(m-1)+(m-2)+\ldots+1=\frac{m(m+1)}{2}=O\left(m^{2}\right)$ gates for the other part

General m:

$$
\begin{aligned}
& \text { Clam: QFT }|x\rangle=\bigotimes_{\rho=1}^{m}\left(\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i x}{2^{2}}}|1\rangle\right)\right) \\
& \quad m=1: \frac{1}{\sqrt{2}}\left(|0\rangle+e^{m i x}|1\rangle\right) \\
& m=2: \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\pi i x}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\pi i x / 2}|1\rangle\right)
\end{aligned}
$$

general m:

$$
\frac{1}{2^{m / 2}}\left(|0\rangle+e^{\pi i x}|1\rangle\right) \otimes\left(|0\rangle+e^{\frac{\pi i x}{2}}|1\rangle\right) \otimes \ldots \otimes\left(|0\rangle+e^{\frac{\pi x}{2}}(1\rangle\right)
$$

$$
\begin{aligned}
& x=\left(x_{m-1}, \ldots, x_{0}\right)=x_{m m, 2} 2^{m-1}+\ldots+x_{n} 2+x_{0} \text { (bin, exp) } \\
& \begin{array}{l}
\Rightarrow Q F T|x\rangle \\
=\frac{1}{2^{m / 2}}\left(|0\rangle+e^{\pi i x_{0}}|1\rangle\right)^{\left|y_{0}\right\rangle} \otimes\left(|0\rangle+e^{\pi i x_{1}+\frac{\pi i x_{0}}{2}}|1\rangle\right)^{\delta^{| | p}}
\end{array} \\
& \otimes \ldots \otimes\left(|0\rangle+e^{\pi i x_{m-1}+\frac{\pi i x_{m-2}}{2}+\ldots+\frac{\pi i x_{0}}{2^{m-1}}}|1\rangle\right)_{\alpha_{1 / 2}}
\end{aligned}
$$

Check of the daim:
QFT $|x\rangle=\frac{1}{2^{m / 2}} \sum_{y=0}^{2^{m}-1} e^{\frac{2 \pi i x y}{2^{m}}}|y\rangle$
For $y=y_{0}+2 y_{1}+\ldots+2^{m-1} y_{m-1}$, the corresponding phase is: $e^{\pi i x \cdot y_{m-1}} \cdot e^{\frac{\pi i x}{2} \cdot y_{m-2}} \ldots e^{\frac{\pi i x}{2^{n}} \cdot y_{0}}$ and ore can check for a given sequence of bits y_{m-1}, \ldots, y_{0}, the phases match in the above expression and that given by the claim.

