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Astrophysics IV: Stellar and galactic dynamics

Solutions
Problem 1:
Using the definition
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Problem 2:
We have:

. ) x x Yz — 2y
L=rxv=¥xr¥=y]| x|y 2T — X%
z Z Ty — YT



Since we're working in the z = 0 plane, and the z component of Lis given by
L. = xy — yi, inserting this to compute L? gives

L? = (yz — 29)? + (26 — 22)? + (wy — y2)? = (2? + y?)22 + L2 = R?:* + L2

Now we use the energy conservation:
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Now eliminate 22 by using our expression for L?:
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Solving for R gives and using Dofp = %% + &:
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Problem 3:
We start from the Lagrangian:

Mﬁ@:%<;+ﬂx@2—ﬂﬁ (1)

From the derivative of this Lagrangian, we can write the momentum p:
P=7+Qx7 (2)
Using the Legendre transformation, we obtain the Hamiltonian that writes:

H(g,p) = 30 + (@)~ 3 (7% D), )

where we renamed 7 by ¢.
We set the rotation to be along the z axis, and for it to be uniformly rotating, it
needs to be constant, i.e.
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The equations of motion in canonical coordinates are given by Hamilton’s equations:
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In our case:
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The relations between cartesian and canonical coordinates are:
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