Solutions to Graded Homework 10
(CS-526 Learning Theory

Problem 1: Multilinear Rank, Tensor Rank

Recall the formulas for the matricizatons:
T(l) = A(C ®knr B)T, where A and C' ® gpg B are of dimensions I1 x R and I>I3 X R respectively.
Moreover for any matrices X,Y we have that:

rank(XY) < min{rank(X),rank(Y)}

Thus:
Ry = rank(T;)) < rank(A4) < min{/;, R} < R

By repeating the same argument for matrizications T(9), T{3) we conclude the proof.

Problem 2: Non-unicity of Tucker decomposition

Let X = [#1,...,28,], Y = [U1,...,yR,), and Z = [Z],...,2R,]. Then, from the definitions of
vectors xpy, Yg, %7, and from the orthogonality of the matrices M @) M@ M@ it is easy to see
that:
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Substituting ,, v, and w, in the Tucker decomposition expression we get:
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where HP'¢"" = S 1o B GPI"M,, () oM, (U)M () which concludes the proof.

p,q,r=1 rir

Problem 3: Whitening of a tensor
1. We have M = UDiag(dy, ..., dx)U” and, by definition, W := UDiag(d; "/%,...,d,.""%). A

direct computation gives:
WTMW = Diag(d; '/?,...,d"*)(UTU)Diag(dy, . .., di ) (UTU)Diag(d; /2, ..., d; )
= Diag(d, /2,... d 1/2)Dlag(d1,...,dK)Diag(dflﬂ,...,d}l/z)
=1.



We used that the columns of U are orthogonal unit vectors: UTU = I. By definition of
we have V' := [171 171(} = W7TuDiag(v/A1, ...,V k) where p := [ﬁl ,E[K] It also
follows from the definition of M that M = puDiag(\y,. .., Ax)u’. Hence:

VVT = W7 uDiag(v/M, ..., V/Ax)Diag(v/ 1, ..., VA )T W
=WTMW
=1.

The matrix V is square and satisfies VV7T = I, thefore V'V = I meaning that the vector ¥;
are orthonormal.

. Because M is known we can compute the matrix W and use it to obtained the whitened
tensor T'(W, W, W) = Efil v U; ® U; ® U; where v; = )\;1/2 and ¥; = A WTi;. We have
shown in the previous question that 7, ..., ¥k are orthogonal unit vectors. Thus, we can use
the tensor power method to recover each of the pair (v, v;) for i € [K]. Because v; > 0 we
can disambiguate the sign and determine (v;, ¥;) from +(v;, ¥;).

Now that all the (v, ¥;) are known, we need to show that the whitening transformation can
be inverted to give back (\;, ii;). The relation between \; and v; is easy to invert: \; =1/ VZZ .

To recover p = [ﬁl e ,JK}, we need to invert the system of equations
V = WTuDiag(v/ 1, ...,V Ax) < VDiag(v,...,vk) = Wi (1)

The matrix W1 = Diag(d{l/ L ,d;(l/ )UT has full row rank and its Moore-Penrose pseudo-
inverse reads (W7)" = UDiag(y/dy, ..., dr). Multiplying both sides of (1) by (W7T)T yields:

(WT)TVDlag(Vl, ceey ]/K) = UUT'u . (2)

At this point we might be tempted to say that UUT = I, yielding = (WT)1VDiag(v1, ..., vk).
However, U is in general not a square matrix and we cannot conclude UUT = I from UTU = I.
This is only a minor setback. Note that (the left-hand side is the definition of M, the right-
hand side is its diagonalization):

pDiag(\1, ..., A\g)ul = UDiag(dy,...,dg)U" ,

where p, U are D x K full column rank matrices. It follows that span(u) = span(U) and there
exists a K x K matrix P such that y = UP. Hence, UUT y = U(UTU)P = UP = p and (2)
reads:

p= WTHVDiag(vy,...,vkg) = UDiag(\/di, ...,/ drx)VDiag(vi,...,vK) .

We are thus able to recover p from the knowledge of W, V' and Diag(vy,...,vk).



