1. H₂ filling station

How big an electrolyser is needed to produce the daily amount of H_2 for a filling station (HRS: hydrogen refuelling station)), under the following assumptions?:

- 1000 cars/day, equivalent of 50 L gasoline/car (LHV gasoline: 33 MJ/L)
- car average consumption: 7 L gasoline/100km
- a FCEV (fuel cell electric vehicle) consumes 1 kg H₂/100 km (LHV H₂: 120 MJ/kg)
- water electrolyser efficiency (electricity → H₂): 68% HHV
- compression energy needed to 400 bar (estimate as 9 % of LHV)
- the electrolyser operates 50% of the time
- Extrapolate the electrolysis power needed for 150 HRS, which is "the quantity of
 existing natural gas filling stations in Switzerland, enough to cover most of the
 national territory. Please comment.

2. Power-to-gas

Switzerland stores yearly about 4 TWhe of electricity via hydro-pumping. Assume instead that this amount of electricity were used to generate H_2 via electrolysis, which would then be combined with CO_2 in a methanation reaction to produce synthetic methane CH_4 for injection into the natural gas grid.

	Assume ~continuous operation: what is the installed electrolysis power? (MWe)
	Use 100% efficiency for steam electrolysis, how much H ₂ is generated per day? (m³/day)
	How much CO_2 is needed for methanation? (4 H_2 + $CO_2 \Leftrightarrow CH_4$ + 2 H_2O)
	How does this compare with Switzerland's CO ₂ emissions?
	How much CH ₄ would be generated per year?
П	How does this compare to the yearly Swiss natural gas consumption of 35 TWh (126 PJ)?

2022-May SGM J Van herle