1. H₂ filling station How big an electrolyser is needed to produce the daily amount of H_2 for a filling station (HRS: hydrogen refuelling station)), under the following assumptions?: - 1000 cars/day, equivalent of 50 L gasoline/car (LHV gasoline: 33 MJ/L) - car average consumption: 7 L gasoline/100km - a FCEV (fuel cell electric vehicle) consumes 1 kg H₂/100 km (LHV H₂: 120 MJ/kg) - water electrolyser efficiency (electricity → H₂): 68% HHV - compression energy needed to 400 bar (estimate as 9 % of LHV) - the electrolyser operates 50% of the time - Extrapolate the electrolysis power needed for 150 HRS, which is "the quantity of existing natural gas filling stations in Switzerland, enough to cover most of the national territory. Please comment. ## 2. Power-to-gas Switzerland stores yearly about 4 TWhe of electricity via hydro-pumping. Assume instead that this amount of electricity were used to generate H_2 via electrolysis, which would then be combined with CO_2 in a methanation reaction to produce synthetic methane CH_4 for injection into the natural gas grid. | | Assume ~continuous operation: what is the installed electrolysis power? (MWe) | |---|--| | | Use 100% efficiency for steam electrolysis, how much H ₂ is generated per day? (m³/day) | | | How much CO_2 is needed for methanation? (4 H_2 + $CO_2 \Leftrightarrow CH_4$ + 2 H_2O) | | | How does this compare with Switzerland's CO ₂ emissions? | | | How much CH ₄ would be generated per year? | | П | How does this compare to the yearly Swiss natural gas consumption of 35 TWh (126 PJ)? | 2022-May SGM J Van herle