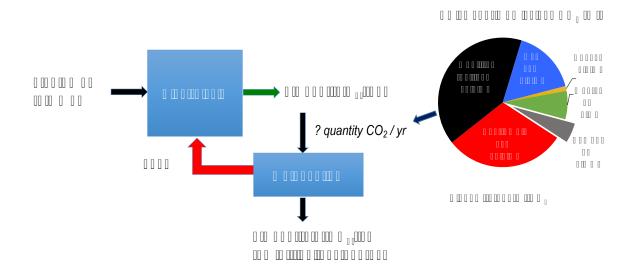
1. H₂ filling station


How big an electrolyser is needed to produce the daily amount of H_2 for a filling station (HRS: hydrogen refuelling station)), under the following assumptions?:

- 1000 cars/day, equivalent of 50 L gasoline/car (LHV_gasoline: 33 MJ/L)
- car average consumption: 7 L gasoline/100km
- a FCEV (fuel cell electric vehicle) consumes 1 kg H₂/100 km (LHV H₂: 120 MJ/kg)
- water electrolyser efficiency (electricity → H₂): 68% LHV
- compression energy needed to 400 bar (estimate as % of HHV)
- the electrolyser operates 50% of the time
- Extrapolate the electrolysis power needed for 150 HRS, which is ~the quantity of
 existing natural gas filling stations in Switzerland, enough to cover most of the
 territory. Comment.

Solution:

- filling station, 1000 cars/day, 50 L gasoline/car
- => 50'000 L gasoline/day yields 50000/7 = 7143 kg H₂ /day in terms of equivalent consumption per 100 km = 857 GJ/day in H₂ energy filled in 1000 cars
- electrolyser efficiency 68% LHV → 1260 GJ/day electricity input needed
- 50% load = 12h : 1260 GJ/(12h x 3600s) = 29 MWe electrolyser
- compression to 400 bar: roughly 10% of LHV needed=> requires extra 126 GJ/day of electricity = 120 GJ/(12h x 3600h) = 2.9 MWe
- hence a total power of at least 32 MWe needed at the filling station
- for 150 HRS this amounts to 4.8 GWe, equivalent to 5 nuclear power stations

2. Power-to-gas

Switzerland stores yearly about 4 TWhe of electricity via hydro-pumping (350 GWhe per month). Assume instead that this amount of electricity were used to generate H_2 via electrolysis, which would then be combined with CO_2 in a methanation reaction to produce synthetic methane CH_4 for injection into the natural gas grid.

Assume ~continuous operation: what is the installed electrolysis power? (MWe)
 Using 100% efficiency for steam to H₂ electrolyis, how much H₂ is generated per day? (m³/day)
 How much CO₂ is needed for methanation? (4 H₂ + CO₂ ⇔ CH₄ + 2 H₂O)
 How does this compare with Switzerland's CO₂ emissions? (43 Mt/yr)
 How much CH₄ would be generated per year?
 How does this compare to the yearly Swiss natural gas consumption of 36 TWh (130 PJ)?

Solution:

4.16 TWhe / (8760 h/yr) = 475 MWe electricity input 100% efficiency => 475 MW equivalence in H₂ With 120 MJ/kg, this corresponds to 475 / 120 = 3.96 kg H₂/s

⇒ *3600 s : 14250 kg/h

⇒ *24 h : 342 ton/day

 \Rightarrow (H₂ density 0.09 kg/m³) : 3.8 million m³ / day

For methanation, $\frac{1}{2}$ in volume of CO₂ is required, hence 950'000 m³ CO₂/day or (CO₂ density 2 kg/m³) 1.9 kt CO₂/day, which times 365 days gives 0.693 Mt CO₂/yr, about 1.6% of total Swiss CO₂ emissions.

This would generate in theory the same volume of 950'000 m³ CH₄/day or 346,75 million m³ CH₄ per year.

As the heating value of CH₄ is considered as 10.5 kWh/m³, this equals 3.64 TWh / yr, or 10% of the total Swiss yearly fossil NG consumption.