Modern photovoltaic technologies PHYS-609

Part 1.4 III-V solar cells

- III-V solar cells
- multi-junction solar cells
- solar cells for space applications
- concentrated photovoltaics (CPV)

Dr. Yaroslav Romanyuk Laboratory for Thin films and Photovoltaics Empa – Swiss Federal Laboratories for Materials Science and Technology yaroslav.romanyuk@empa.ch

III-V semiconductors

GaAs (<i>Eg</i> = 1.42 eV)							
GaP							
InP		13	14				
InAs		IIIA 3A	IVA 4A				
		Boron	Carbon				
GalnAs	12	10.811 13	12.011				
	IIB 2B	Aluminum 26.982	Silicon 28.086				
GainP	³⁰ Zn	Ga	Ge				
AlGaInAs	48	Gallium 69.723	Germanium 72.631				
	Cd Cadmium 112.414	Indium 114.818	Sn 118.711				
AlGaInP	80 Ha	81 TI	82 Ph				

Cubic crystal structure of GaAs *www.wikipedia.com*

https://sciencenotes.org/use-periodic-table/

Lead 207.2

Thallium

204.383

Growth methods:

Metalorganic Vapor Phase Epitaxy (MOVPE) Molecular beam epitaxy (MBE) 16

VIA

6A

O

Oxyge 15,999

Sulfu

Se

78 97

elluriu

Po

208.982

16

15 VA

5A

Nitroge 14.007

Ρ

30 974

As

Sb

121 76

Bi

Bismuth

208.980

15

Why GaAs is a good PV material

- High carrier mobility up to 8500 cm²/Vs
- Suitable bandgap 1.42 eV
- High absorption coeff. > 10^5 cm⁻¹
- High luminescence yield (>99%)
- Good PV material is a good LED! (and vice versa)

Concept of «photon recycling»

III-V semiconductor bandgaps

Image from https://www.tf.uni-kiel.de

Epitaxial growth

- Deposition (growth) of layer on a single crystal substrate where atoms of the grown layer accommodate/follow the same crystalline order as the substrate
- Epitaxy yields single-crystalline layers with low defect concentration
- Important keywords: lattice mismatch, strained/relaxed, dislocations
- Growth methods: Metalorganic Vapor Phase Epitaxy (MOVPE), Molecular beam epitaxy (MBE), Dynamic Hybrid Vapor Phase Epitaxy (D-HVPE)

GaAs single junction cells

w/ Bragg reflector

Source: http://pvlab.ioffe.ru/about/solar_cells.html

GaAs cells from Alta Devices

Single crystal thin film GaAs solar cells and modules

•Economical III-V flat plate (\$1/Wp) PV System)

Source: Prof. H. Atwater, Intersolar 2013

GaAs production by ELO process

J.J. Schermer et al, Thin Solid Films, Volumes 511–512, 2006, 645

A 1-µm-thick GaAs film of 2 in. in diameter on a flexible plastic carrier (right-hand side) after epitaxial lift-off from its substrate (left-hand side).

 Highest efficiency GaAs cells are prepared with Epitaxial Lift-Off (ELO) process that has potential of significant cost reduction.

Multi-junction III-V cells

Spectral mismatch for single-junction cells

Image from : http://maxloosolarenergy.blogspot.com/2016/12/spectral-utilization-ii-shockley.html

 Incomplete utilization of the solar spectrum in single-junction cells limits the maximum efficiency to 33% (S-Q limit)

Multi-junction solar cells

Better utilization of the solar spectrum in multi-junction cells

Multi-junction approaches

Metamorphic (lattice mismatched)

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119313021.ch5

Maximum efficiency for multi-junction cells

reflectors

Cell n

light

Cell 1

	N. cells	Description	Reflectors?	Optimum gaps (eV)			Eff (%)	
				$\overline{E1}$	E2	E3	<i>E</i> 4	
	(AM1.5 d	lirect normal irradiance)						
		1 sun, no angular restriction	Yes	1.13	-	-	_	32.5
	1	1 sun no angular restiction	No	1.13	_	_	-	32.5
		Maximum concentration	Yes	0.94	_	-	_	44.6
		Maximum concentration	No	0.94		-	-	44.6
		l sun, no angular restriction	Yes	0.94	1.64	_	_	44.3
$ \square $	2	1 sun no angular restiction	No	0.94	1.64	-	-	44.1
		Maximum concentration	Yes	0.71	1,41	-	_	59.7
		Maximum concentration	No	0.71	1.41	-	_	59.4
		I sun, no angular restriction	Yes	0.71	1.16	1.83	-	50.1
	3	I sun no angular restiction	No	0.71	1.16	1.83	_	49.7
		Maximum concentration	Yes	0.69	1.16	1.84	_	67.0
		Maximum concentration	No	0.69	1.16	1.83	_	66.6
		l sun, no angular restriction	Yes	0.71	1.13	1.55	2.13	54.0
Cell N	4	1 sun no angular restiction	No	0.71	1.13	1.55	2.13	53.6
		Maximum concentration	Yes	0.53	1.13	1.55	2,13	71.0
		Maximum concentration	No	0.53	1.13	1.55	2.13	70.7
		I sun, no angular restriction	Yes	_	_	_	_	65.4
	×	1 sun no angular restiction	No	-	_		-	65.4
		Maximum concentration	Yes	_	-	-	_	85.0
		Maximum concentration	No	-	-	_	-	85.0

Marti & Araujo, SOLMAT 1996

Triple-junction cells based on III-V

Image: www.Wikipedia.com

Structure of a triple-junction III-V cell

Handbook for Photovoltaic Science and Engineering, 2011

Tunnel junction

Image: www.Wikipedia.com

- Tunnel junctions provide a low electrical resistance between two subcells
- Must be optically transparent

3J space cell from Azur Space

Design and Mechanical Data

Base Material	GalnP/GaAs/Ge on Ge substrate
AR-coating	TiO _x /Al ₂ O ₃
Dimensions	40 x 80 mm ± 0.1 mm
Cell Area	30.18 cm ²
Average Weight	≤ 50 mg/cm ²
Thickness (without contacts)	80 ± 20 μm
Contact Metallization Thickness (Ag/Au)	3 – 10 µm
Grid Design	Grid system with 2 contact pads

Electrical Data

		BOL	2,5E14	5E14	1E15
Average Open Circuit Voc	[mV]	2700	2616	2564	2522
Average Short Circuit Isc	[mA]	520.2	518.5	514.0	501.9
Voltage at max. Power V _{mp}	[mV]	2411	2345	2290	2246
Current at max. Power Imp	[mA]	504.4	503.2	500.6	486.6
Average Efficiency ŋbare (1367 W/m ²)	[%]	29.5	28.6	27.8	26.5
Average Efficiency ŋbare (1353 W/m ²)	[%]	29.8	28.9	28.1	26.8

Parameters given for Begin of life (BOL) and End of life (EOL) after different electron fluence

Standard: CASOLBA 2005 (05-20MV1, etc); Spectrum: AMO WRC = 1367 W/m²; T = 28 °C

@fluence 1MeV [e/cm²]

Source: http://www.azurspace.com/images/products/0004148-00-01_DB_GBK_80µm.pdf

Efficiency chart

Best Research-Cell Efficiencies

Source: NREL chart, May 2024

x6 junction solar cell – 47.1% (NREL, 2020)

Cross-sectional TEM

NREL group, Nature Energy 5 (2020) 326

x6 junction with 47.1% efficiency

NREL group, Nature Energy 5 (2020) 326

Current world record: 47.6% from 4-junction (Fraunhofer ISE, 2022)

Fraunhofer ISE, May 2022

Solar cells for space

Solar Power Generation in Space

Vanguard 1 (USA, 1958 - 1964)

Solar Power Array for Envisat

Largest European satellite Mission: 4 years Launched in February 2002

Power: 6.55 kW (EOL) Size: 5x14 m²

Silicon cells

Rigid (foldable) structure

Dutch Space

Space solar module assembly

- Thermal stresses relieved by thick adhesives.
- Interconnects equipped with stress relieve.

Dutch space

Starlink

- 12 segments of 3.2 m long, total area 30 m2
- Probably Si cells

https://space.stackexchange.com/questions/64729/who-is-manufacturing-the-solar-panels-for-starlink-satellites

Assuming 18% efficiency and 1250 W/m2 gives 6 kW of total power

https://lilibots.blogspot.com/2020/04/starlink-satellite-dimension-estimates.html

Satelite orbits

- PV power requirement for a telecom satellite~ 10kW
- Weight 20...200 kg (array specific power 45W/kg)
- can add \$1....10 Mio \$ to the launch cost for GEO

Solar radiation in space

AM0 solar spectrum in space (outside Earth's atmosphere): 1353 W/m²

Particle fluxes near the Earth

Van Allen radiation belts

Trapped Particles protons (~ 0.1 MeV - 100's MeV) electrons (~1 keV - several MeV)

Particle flux: particle/cm²/s protons: 10⁶ to 10⁸ (~ 0.1 MeV 10 MeV 10² to 10⁴ (> 30 MeV)

electrons: 10⁶ to 10⁸ (40 keV - 1MeV) 10² to 10⁴ (> 1.5 MeV)

Modified from Source: M G Pia (CERN, INFN) www.space.dera.gov.uk/space_env/geant_docs/CHEP2000_poster

Cell degradation in space

Efficiency degradation in space due to electron and proton irradiation

- Degradation of solar cell performance due to defect generation in the semiconducting layers.
- Elevated temperatures reduce the voltage, FF and increase the current.

Spectrolab 3J GaAs

III-V multi-junction cells for space

Spectrolab NeXt Triple Junction (XTJ) cells Efficiency: 29.5%

Radiation Degradation

(Fluence 1MeV Electrons/cm²)

Parameters	1x10 ¹⁴	5x10 ¹⁴	1x10 ¹⁵
lmp/lmp ₀	1.00	0.99	0.95
Vmp/Vmp ₀	0.94	0.91	0.89
Pmp/Pmp ₀	0.95	0.90	0.85

Concentrator PV (CPV)

(not to be confused with concentrator solar power CSP)

Why concentrator photovoltaics?

Reduce solar cell area by using optical concentration: up to ~1000 suns

Replace solar cell material (expensive) by optics (cheaper?)

Solar parameters under concentrated light

Figure 8.12 Efficiency, V_{OC} , and fill factor of state-of-the-art GaInP/Ga_{0.96}In_{0.04}As/Ga_{0.63}In_{0.37}As three-junction cell as a function of concentration. J_{SC} , not shown, is assumed to increase proportionally to concentration

Handbook of photovoltaic science and engineering, 2011

Light concentrators

Parabollic mirror concentrator

Compound parabolic concentrator

Fresnel lenses

Handbook of photovoltaic science and engineering, 2011

Light concentrating systems

	Typical		Type of
Class of CPV	concentration ratio	Tracking	converter
High Concentration PV (HCPV)	300-1000	Two-axis	III-V multi-junction solar cells
Low Concentration PV (LCPV)	< 100	One or two-axis	c-Si or other cells

"Current status of concentrator photovoltaic (CPV) technology" report, ISE and NREL, 2016

CPV efficiency

- Certified record value for solar cell efficiency of 47.6% (F ISE, 2022)
- Module efficiency of 38.9 % (Soitec)

30 MW plant in Alamosa, Colorado, USA (© Amonix)

CPV installations

"Current status of concentrator photovoltaic (CPV) technology" report, ISE and NREL, 2018

- Cumulative worlds installations: 360 MW (only 0.1% of total PV)
- Worldwide manufacturing capacities have strongly decreased in 2015 due to the closure of Soitec's and Suncore's manufacturing facilities.

Insolight (Swiss made)

https://insolight.ch/technology/