Image Formation (Cont’d)
&
Edge Detection
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Reminder: Image Formation

Projection from surfaces to 2-D sensor.
e Where: Geometry

e How bright: Radiometry

e Stored how: Sensing




Reminder: Pinhole Camera Model

In pixels
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—->Reformulate it as a linear operation using
homogeneous coordinates.
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Reminder: Projection in Homogeneous Coordinates

Projection Matrix

2D projection [ w
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Reminder: Camera Calibration

Internal Parameters:

e Horizontal and vertical scaling (2)
e Principal points (2)

e Skew of the axis (1)

External Parameters:

e Rotations (3)

e Translations (3)

—->There are 11 free parameters to estimate. This is
known as calibrating the camera.
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Reminder: Thin Lens
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e Diameter d=2a of the lens that is exposed to light.
e The image plane is not located exactly where the rays meet.
e The greater a, the more blur there will be.
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Reminder: Distortions

The lens is not exactly a “thin lens:”
e Different wave lengths are refracted differently,
e Barrel Distortion.

=PrL A



Undistorting
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Once the image is undistorted, the camera projection
can be formulated as a projective transform.

- The pinhole camera model applies.
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Scene Radiance (Rad) : Amount of light radiation emitted
from a surface point (Watt / m2 / Steradian).

Image Irradiance (II_‘I‘%: Amount of light incident at the
image of the surface point (Watt / m2).

Irr = g(?)zcos“(a)Rad ,

= Irr « Rad for small values of «. a



Vignetting
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Images can get darker towards their edges because some
of the light does not go through all the lenses.
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—> As for geometric undistortion, undo vignetting to create an
image that an ideal camera would have produced. ﬂ

=Pr-L Zheng et al., CVPR’08



Row Transfer

<

Sensor Array

Array of
— Collection

Sites

Photons free up electrons that
areI Ithen captured by a potential
well.

Charges are transferred row by
row wise to a register.

Pixel values are read from the

Y Y Y VY

Serial Register

. register.

Pixel Transfer

>
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Sensing

Conversion of the “optical image” into an “electrical image”:

t1 A
/ / Irr(x,y,t, A\)s(\)dtdA
to 0

E(x,y)

L1 Y1
I(m,n) = Quantize(/ / E(x,y)dxdy)
zo Yo

- Quantization in
e Time

cprFL * Space




Sensors
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CCD CMOS

eCharged Coupling Devices (CCD): Made through a special manufacturing process that
allows the conversion from light to signal to take place in the chip without distortion.

eComplimentary Metal Oxide Semiconductor (CMOS): Easier to produce and similar
quality. Now used in most cameras except when quantum efficient pixels are needed,

e.g. for astronomy.
EPFL ..



In Short

e Camera geometry can be modeled in terms
of the pinhole camera model, which is
linear in projective space.

e Image radiance is roughly proportional to
surface radiance and the two can be used
interchangeably for our purposes.
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Edge Detection

e What's an edge
e Image gradients
e Edge operators




Line Drawings

= Edges seem fundamental to human perception.
» They form a compressed version of the image.




From Edges To Cats

TOOL INPUT OUTPUT

PIX2piX

A - -y =

Deep-Learning based generative model.

=PrL Demo https://affinelayer.com/pixsrv/ A



https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/

Uiy ——
Py

1104 19Zi13P;

Chemin-de,,
)

A

S
qux—

2 &
W
t

iyt
e

2
3

s

i
ax
ok

b

-0,
5

- ag

el B

noy

{
-
Monteiron1—
¥

ed-21-3piay!
L

: ke L
\‘Ci\\ | "t Villarg
V V 33 : induBochet =
} Ro, ) cneni duBoc|
" o “?a»dQ'c { s ; ;

Seqenpaa0ods g
% \ “a\

o
U L T e
e dirtE

© 2018 Google




Corridor

=PrL



Corridor

=PrL



Edges and Regions

Edges:

e Boundary between bland image regions.
Regions:

e Homogenous areas between edges.

- Edge/Region Duality.

=PrL



Discontinuities

e A. Depth discontinuity: Abrupt depth change in the world

e B. Surface normal discontinuity: Change in surface
orientation

e C. Illumination discontinuity: Shadows, lighting changes
e D. Reflectance discontinuity: Surface properties, markings

- Sharply different Gray levels on both sides
=EpPFEL -



REALITY

= Plot
242 44
33.06
0 Pixels
255.00 \q

46.00

0 Inches 275 =)
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Very noisy signals
—> Prior knowledge is required!!
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Optional: lllusory Contours

N

¢ 9

e No closed contour, but we still perceived an edge.
e This will not be further discussed in this class. !



Ideal Step Edge

Rapid change in image => High local gradient
f(x) = step edge = =) f

1st Derivative f'(x) l\ maximum

2nd Derivative f”(x) /\ Zero crossing

=PrL A
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Edge Properties

Contrast
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Edge Descriptors

e Edge Normal:
e Unit vector in the direction of maximum intensity change

e Edge Direction:

e Unit vector perpendicular to the edge normal
e Edge position or center

e Image location at which edge is located

e Edge Strength
e Speed of intensity variation across the edge.

L A



Images as 3-D Surfaces
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Geometric Interpretation

Since I(x,y) is not a continuous function:
1.Locally fit a smooth surface.
2.Compute its derivatives.

=PrL



Image Gradient

The gradient of an image

g2l 3l
ox Oy
points in the direction of most rapid change in
intensity.
VI = lél 0

YT g

W=[o,ﬂ]
dy

-




Magnitude And Orientation

[ 2 ] 2
Measure of contrast: G = 9L + o
ox 0y

, , [ odl
Edge orientation : 6 = arctan(a , 0 )

dy ox
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Gradient Images
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The gradient magnitude is unaffected by orientation ....
EPFL A



Real Images

... but not directly usable in most real-world images.




Edge Operators

Difference Operators
Convolution Operators
Trained Detectors
Deep Nets




Gradient Methods

—

F(x)
\/ Edge = Sharp variation

X !

JL Large first derivative

” g



1D Finite Differences

In one dimension:

x—dx x x+dx

daf  fx+dx)-f(x) f(x+dx)-f(x-dx)
dx dx - 2dx

d’f  f(x+dx)-2f(x)+ f(x—-dx)

EpEL dx’ dx A




Coding 1D Finite Differences

Line stored as an array:

foriin range(n-1):

qli]=(pli+1]-p[i])

for iin range(1,n-1):
qli]=(pli+1]-pli-1])/2

q=(p[2:]-p[:-2])/2

p— [ [[TT[]]




2D Finite Differences

of _fr+dn,y)=f(0) _ f(xr+de,y)- f(x-dx,y)

ox dx 2dx
of _Juy+dy)-f(xy) Sy +dy)-f(x,y-dy)
oy dy 2dy

M



Coding 2D Finite Differences

m p —> I L[]

Python

Image stored as a 2D array:

e dx = p[1:,:]-p[:-1,:]
dy = p[:ll:]_p[:l:-l]

o dx = (p[Z:I:]_p[:-ZI:])/z
dy = (p[:lz:]-p[:l:-z])/z

C

Image stored in raster format:
{
int i;
for(i=0;i<xdim;i++){
dx[i] = pli+1] -pli];
dy[i] = p[i+xdim]-p[i];
by
by

e Only 1D array accesses
e No multiplications

—> Can be exploited to increase speed.



Noise in 1D

Consider a single row or column of the image:

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

T T I T : I I I

| | | | | 1 | | 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000




Fourier Interpretation

Function | Fourier Transtorm
d
L (z) uF'(u)

2 (z,y) uF (u, v)

2 (z,y) vF(u,v)

- Differentiating emphasizes high frequencies
and therefore noise!

=PrL
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f(x) = x2 sin(1/x)
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Noise in 2D

Ideal step edge Step edge + noise

Increasing noise level

As the amount of noise increases, the derivatives stop being

meaningful.
=PrL




Removing Noise

Problem:

e High frequencies and differentiation do not
mix well.

Solution:

e Suppress high frequencies by
* using the Discrete Fourier Transform.

=PrL A



Discrete Fourier Transform

1 M—-1N-1
F( I, y) — Z Z f(x, y) e—2i7z(,ux/M+1/y/N )
V M*N x=0 y=0
1 M—-1N-1 .
f(x, y) — Z Z F( i, I/) e+2m(,ux/M+1/y/N )
V M*N u=0 v=0

The DFT is the discrete equivalent of the 2D Fourier transform:
e The 2D function f is written as a sum of sinusoids.
e The DFT of f convolved with g is the product of their DFTs.

=PrL A



Fourier Basis Element

Real part of
e +2in(ux+vy)

where

« Vu?+ v? represents the frequency,
* atan(v, u) represents the orientation.

PFL M
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Fourier Basis Element
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Truncated Inverse DFT

M-1N—-1

1 .
F(,u, U) = Z Z f(x, y)e—Zm(,ux/M+vy/N)
V M*N x=0 y=0

F( U y) e +2in(ux/IM+vy/N)

| :
. +2in(pux/M+vy/N
faeyy=———= 3 F(upetruitiy
\/ M*N /42+1/2<T T 1s a hand-specified threshold.

« The sinusoids corresponding to u? + v> > T depict high frequencies.
 Removing them amounts to removing high-frequencies.

=PrL A



Smoothing by Truncating the IDFT

EEnE

Rotated stripes:
e Dominant diagonal structures
e Discretization produces additional harmonics

—> Removing higher frequencies and reconstructing
yields a smoothed image.

=PrL A



Removing Noise

Problem:
e High frequencies and differentiation do not mix well.

Solution:

e Suppress high frequencies by
e using the Discrete Fourier Transform,
e convolving with a low-pass filter.




=PrL

1D Convolution
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Smooth Before Differentiating

Sigma = 50

~
Signal

Q
Kernel

00

oQ
*
~
Convolution

K}
T2
N
oQ
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~
N
Differentiation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Simultaneously Smooth and Differentiate

Sigma = 50
|

.................................................

~
Signal

.....................................................

1
1800 2000

|
1600

L ! L 1 1 L 1
0 200 400 600 800 1000 1200 1400

98
ox

Kernel

1

1 1 | 1 1 1 | 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

9 oz, ,
ox (8% 1) ox / ! I S S S S S

0 200 400 600 800 1000 1200 1400 1600 1800 2000

cprep --> Faster because dg/dx can be precomputed. A



Discrete 1D Convolution

Input
1 4 1 0 2 2 1 3 3 1
w
Mask
1 2 0 1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
1 4 1 0 2 2 1 3 3 1
w
1 2 0 1
w
Output
9
W-w+1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
1 4 1 0 2 2 1 3 3 1
w
1 2 0 1

w

Output
9 0

W-w+1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
1 4 1 0 2 2 1 3 3 1
w
1 2 0 1
w
Output
9 0 1
W-w+1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
1 4 1 0 2 2 1 3 3 1
w
1 2 0 1

w

Output
9 0 1 3

W-w+1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
1 4 1 0 2 -2 1 3 3 1
w
1 2 0 1

w
Output

9 0 1 3 5
W-w+1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
1 4 1 0 2 -2 1 3 3 1
w
1 2 0 1

w
Output

9 0 1 3 5 3
W-w+1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
1 4 1 0 2 -2 1 3 3 1
w
1 2 0 1

w
Output

9 0 1 3 5 3 6
W-w+1

F. Fleuret. EE-559 — Deep learning A



Discrete 1D Convolution

Input
f 1 4 1 0 2 2 1 3 3 1
w
Mask
1 2 0 1
m
w
Output
9 0 1 3 5 3 6
m*f
W-w+ 1

OEDWIOUCEE)
=0




Discrete 2D Convolution

Input 1mage: f

Convolved image: m**f

———tE0

Convolution mask m, also known as a kernel.

my

mwl

m

m

w

ww

i=0 j=0




Differentiation As Convolution

[—1,1]9 Zf ~ f(x'l'dxay)_f(xay)
X

dx
[_ 0590905]6 af ~ f(x+dx,y)—f(x—dx,y)
0x 2dx
- _of _ fGuy+dy)-[f(x,p)
L]y dy
0.5
0 | _Shy+dy)-fx,y-dy)
) 2d
0.5 Y Y

- Use wider masks to add some smoothing

=PrL A
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Compute the difference of averages on either
side of the central pixel.

EPFL Aﬁ
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-1 0 1]
-1 0 1

-1 0 1

Prewitt operator

and

1

3X3 Masks

1

X derivative
N

-1 -1 —=1]
O 0 O

1

y derivative

-1 0 1
-2 0 2

-1 0 1

Sobel operator

and

—1

-2

—11

gt



Prewitt Example

Santa Fe Mission Gradient Image




m

P

L

Sobel Example




Gaussian Smoothing

e More principled way to eliminate high frequency
noise.

o Is fast because the kernel is
e small,
e separable.

EPFL A



Gaussian Functions

1

e exp(—(x2 + yz)/ZUz)

g2,(x,y) =

e The integral is always 1.0
e The larger ¢, the broader the Gaussian is.
e As ¢ approaches 0, the Gaussian approximates a Dirac function.

=PrL




DFT of a Gaussian

. 201 sampes |

07 1~ The DFT of a Gaussian is
| a Gaussian.

| It has finite support.

il | Its width is inversely
| proportional to that of the
original Gaussian.

EPFL £



Gaussians as Low-Pass Filters

e The Fourier transform of a convolution is the product of their Fourier
transforms: F (g *f) = F(g)F(f).

o If g 1s a Gaussian, so is F(g).

e Furthermore if g is broad, the support of F(g) 1s small.

* So 1s the support of F (g *f).

* There are no more high-frequencies in g * .

—> Convolving with a Gaussian suppresses the high frequencies.

PFL P



Gaussian Smoothed Images

Blurred image




Scale Space

1.5

A
(o2}

o) ﬂﬂ@ﬂ Qﬂ ﬂﬂ A

X

Increasing scale (o) removes high frequencies (details) but never
adds artifacts.

=PrL A



Separability

/fi \“\ 7.00=

exp(-x"/0?)
TO

/1 \ 2,(x,y)=g,(x)g (y)

[ &2V f (x=u,y =v)dudv = [ g,(u)([ & () f (x —u,y = v)dv)du
= [& ([ &) f (x—u, y = v)du)dv

—> 2D convolutions are never required. Smoothing can be
achieved by successive 1D convolutions, which is faster.
=EPFEL g



Continuous Gaussian Derivatives
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Image derivatives computed by convolving
with the derivative of a Gaussian:

%fwﬁgZ(u’v)f(x_u’y_v)dudv=j;g1'(“)(j;g1(")f(x—u,y—v)dv)du

%f (€2, ) f (2 =1,y = v)dudv = [/0)([ g @) f (x=u,y = v)du)dv




Discrete Gaussian Derivatives

EEEEEEN
EEEEEEE
« [ =
g

Sigma=1:

14

g

g : 0.000070 0.010332 0.207532 0.564131 0.207532 0.010332 0.000070
g 0.000418 0.041330 0.415065 0.000000 -0.415065 -0.041330 -0.000418

Sigma=2:

g : 0.005167 0.029735 0.103784 0.219712 0.282115 0.219712 0.103784 0.029735 0.005167

g 0.010334 0.044602 0.103784 0.109856 0.000000 -0.109856 -0.103784 -0.044602 -0.010334

|—> Only requires 1D convolutions with relatively small masks.
=PrL A



Increasing Sigma

Input Images Gradient Images

No Noise

c=4 \
Noise Added No Noise Noise Added

—> Larger sigma values improve
“PFL robustness but degrade precision. A
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Derivative Images
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Derivative Images

=PrL



Gradient-Based Tracking

Maximize edge-strength along projection of the 3—D
wireframe.




Gradient Maximization

Pose estimation 3D Maodel
Image from Image Gradient Motion Minimization

video daemon computation prediction g algorithm




Real-Time Tracking




Canny Edge Detector

I — +— Thinned gradient image

pe000e )

eee0 e 000000||000000
TX XN 000000/|000000
IXXXXN| - 000000(|000000
XX NN ] 000000]|000000
ITXYY) ! 000000||000000
0000 { 000000||000000
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Canny Edge Detector

C
O
)
=

O

>

C

O
O

Gradient strength
Gradient direction

Thresholding

Non Maxima Suppression
Hysteresis Thresholding

=PrL



Non-Maxima Suppression

® ® ® o o
P
@ ® @
. q
Gradient /
® ® O o ®
r
® @ ® ®

Check if pixel is local maximum along gradient direction,
which requires checking interpolated pixels p and .

=PrL A



Hysteresis Thresholding

-
T\

e Algorithm takes two thresholds: high & low
e A pixel with edge strength above high threshold is an edge.
e Any pixel with edge strength below low threshold is not.

e Any pixel above the low threshold and next to an edge is
an edge.

o [teratively label edges
e Edges grow out from ‘strong edges’
e [terate until no change in image.

=PrL A



Canny Results

| e g

F71d
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Canny Results

A
"
HEA NS/
i

Nz

. \|
\\\%L
o=1, T2=255, T1=220

=L Heath et al., PAMI’97 A



Scale Space Revisited

1.5

e
o

o) ﬂﬂ@ﬂ Qﬂ ﬂﬂ \
— —

Increasing scale (o) removes details but never adds new ones:

Edge position may shift.
Two edges may merge.
An edge may not split into two.

EPFL A



Multiple Scales

- Choosing the right scale is a difficult semantic
problem.

=PrL A



Scale vs Threshold

Fine scale
High threshold

Coarse scale
High threshold

Coarse scale
Low threshold




Industrial Application

Navigation error and
variations in the location
of pallets and blank piles

Cng:ra (<10cm, <1009 ‘
Heights of table
& blank piles
Pantilt Pantilt
Camera Image 2. Depth
Processing

Approximated poses
of the pallet and blank
piles (<2cm, <30)

R ——
A location of |
a blank pile £

4. Filtering

Processing pose of the

blank pile
(<Imm, <0.5°)

In industrial environments where the Canny parameters can be properly
adjusted:

e It is fast.

e Does not require training data.

mpr-
= P 'm L Lim et al. , Advanced Robotics 2019. A



Visual Servoing

—> A useful tool in our toolbox.

E P F L Drummond and Cipolla, PAMI’02 A



Tracking a Rocket

Image gradient

Given an initial pose estimate: f\\

Find the occluding contours.
Find closest edge points in the normal direction.
Re-estimate pose to minimize sum of square distances.

Iterate until convergence.
EPEL o

Occluding contour



Visual Servoing




Space Cleaning

» A more sophisticated version of this old algorithm will
blast off in 2025!
e ESA does not yet trust neural nets for such a mission.

Capturing and deorbiting
a dead satellite.

PrL https://clearspace.today/ ‘@
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Limitations of the Canny Algorithm

There is no ideal value of ¢!

PrL



Steep Smooth Shading

Rapidly varying gray levels.
Large gradients.

EPFL ‘ﬁﬂ



Texture Boundaries

Not all image contours are characterized by
strong contrast.

Sometimes, textural changes are just as
significant.

=PrL



Different Boundary Types

Non-boundaries Boundaries
| 3 o

Martin et al. , PAMI’04 ‘m



Training Database

=PrL ‘@



Machine Learning

Optimized Cues Boundary Strength

Cue Combination
e d Brightness
' —} Color

—> Texture

Human Segmentations

Learn the probability of being a boundary
pixel on the basis of a set of features.

=PrL ‘@



Comparative Results

Image Cann

L Martin et al. , PAMI’04 ‘ﬁ



Classification vs Regression

O
o))

Precision
o
[4,]

o
'S

I k
---[F = .71] Classification
—[F =.73] gPb - Arbelaez 11 _
[F =.73] CHM - Seyedhosseini ’13 kl
—[F =.74] SCG - Ren 12 '
—[F =.75] SE - Dollar 13 —

—[F = .75] MCG — Arbelaez 14 , /
—[F = .76] Our method e 2 B 74N

N

Ren,|NIPS 12 our methed
(classificatio

o
w

o
N

o
-

N

Yes!

=PFL Sironi, et al, PAMI'5 ag[el]



Deep Learning

Input imagex

o gD

side

Receptive Field Size

5 14 ( 140

“pnmmnnmnnn  Weighted-fusion layer Ermor Propagation Path
r----! Side-output layer Error Propagation Path

=PFL Xic and To, 100V 15 ab[elN




Deep Learning Vs Canny

(f) HED: side output 4

(g) Canny: 0 = 2 (h) Canny: 0 =4 (i) Canny: 0 =8




Deeper Learning

image
stage 1 +

[ 3x3-64 conv_}>-{1x1-21 cony| 5
: [irireom

[ 3x3-64 conv_|>-[1x1-21 cony,

2x2 pool
stage 2 +
b3 [ . Ground truth

2x2 pool
stage 3 +
3x3-256 conv

+
[ 3x3-256 conv_}>{1x1-21 conv}-{>{ 1x1-1 conv } >/ deconv }-I:Ilosslsigmoid|
Y

[ 3x3-256 conv | >-{1x1-21 conv

Image Pyramid

2x2 pool .
stage 4 + .
i A,

Output

[ 3x3-512 conv_}>-[1x1-21 conv

\ 4
|3ﬂJ2m ]>-[1x121 cony| % 1x1-1mw|—>|daww|m>|

RCF Forward Average

[3x3-512 conv | >-{1x1-21 conv

2x2 pool
stage 5 +
| 3x3-512 conv }>-[1x1-21 conv

[ 3x3-512 conv_|>{1x1-21 cony] z| 1x1-1 conv | > deconv H>-[loss/sigmoid|

[ 3x3-512 conv }>-{1x1-21 cony|

fusion ¢

loss/sigmoid

=P-L Liuetal. , CVPR’17




Convolutional Neural Network

lllll
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h1 h2

= Succession of convolutional and pooling layers.
= Fully connected layers at the end.
—> Will be discussed in more detail in the next lecture
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A Partial Explanation?

First and second layer features of a Convolutional Neural Net:
= They can be understood as performing multiscale filtering.

= The weights and thresholds are chosen by the optimization
procedure.
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Precision

50 Years Of Edge Detection
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Canny, PAMI’86 —> Sironi et al. PAMI’15
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Let us talk about deep networks.

Convolution operators respond
to steep smooth shading.

Parametric matchers tend to
reject non ideal edges.

Arbitrary thresholds and scale
Sizes are required.

Learning-based methods need
exhaustive databases.

There still is work to go from
contours to objects.

Sironi et al. PAMI’15 —> Liuetal. , CVPR’17
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