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Reminder: Image Formation

Projection from surfaces to 2-D sensor.

• Where: Geometry

• How bright: Radiometry

• Stored how: Sensing
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Reminder: Pinhole Camera Model

!Reformulate it as a linear operation using 
homogeneous coordinates.

u ∝ xi = f
xc

zc

v ∝ yi = f
yc

zc

In meters

In pixels
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Reminder: Projection in Homogeneous Coordinates

Hartley, Chap 6.

x = PX

P = K [
1 0 0 0
0 1 0 0
0 0 1 0] Rt

with K =
αu s pu

0 αv pv

0 0 1
, Rt = [R T

0 1 ] , and RTR = I .

Intrinsics Extrinsics

3D point2D projection

Projection Matrix
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Reminder: Camera Calibration
Internal Parameters:

• Horizontal and vertical scaling (2)

• Principal points (2)

• Skew of the axis (1)

External Parameters:

• Rotations (3)

• Translations (3)


!There are 11 free parameters to estimate. This is 
known as calibrating the camera. 
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Reminder: Thin Lens

aperture

iris diaphragm

• Diameter d=2a of the lens that is exposed to light.

• The image plane is not located exactly where the rays meet. 

• The greater a, the more blur there will be. 

Image Plane
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Reminder: Distortions

The lens is not exactly a “thin lens:”

• Different wave lengths are refracted differently,

• Barrel Distortion.
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Undistorting

Once the image is undistorted, the camera projection 
can be formulated as a projective transform.


!  The pinhole camera model applies.
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Fundamental Radiometric Equation

Scene Radiance (Rad) : Amount of light radiation emitted 
from a surface point (Watt / m2 / Steradian).


Image Irradiance (Irr): Amount of light incident at the 
image of the surface point (Watt / m2).


Irr =
π
4

(
d
f

)2cos4(α)Rad ,

⇒ Irr ∝ Rad for small values of α .
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Vignetting

Images can get darker towards their edges because some 
of the light does not go through all the lenses.



11

De Vignetting

Zheng et al., CVPR’08

—> As for geometric undistortion, undo vignetting to create an 
image that an ideal camera would have produced. 
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Sensor Array

• Photons free up electrons that 
are then captured by a potential 
well.


• Charges are transferred row by 
row wise to a register.


• Pixel values are read from the 
register.
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Sensing

Conversion of the “optical image” into an “electrical image”:


! Quantization in 

• Time

• Space
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•Charged Coupling Devices (CCD):   Made through a special manufacturing process that 
allows the conversion from light to signal to take place in the chip without distortion.


•Complimentary Metal Oxide Semiconductor (CMOS): Easier to produce and similar 
quality. Now used in most cameras except when quantum efficient pixels are needed, 
e.g. for  astronomy.

CCD CMOS

Sensors
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In Short

• Camera geometry can be modeled in terms 
of the pinhole camera model, which is 
linear in projective space.


• Image radiance is roughly proportional to 
surface radiance and the two can be used 
interchangeably for our purposes.
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Edge Detection

• What’s an edge

• Image gradients

• Edge operators
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Line Drawings

▪ Edges seem fundamental to human perception.

▪ They form a compressed version of the image.  
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From Edges To Cats

https://affinelayer.com/pixsrv/

Deep-Learning based generative model. 

Demo

https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
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Maps and Overlays 
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Corridor
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Corridor
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Edges and Regions

Edges: 

• Boundary between bland image regions.

Regions: 

• Homogenous areas between edges.


! Edge/Region Duality.
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Discontinuities

• A. Depth discontinuity: Abrupt depth change in the world

• B. Surface normal discontinuity: Change in surface 

orientation

• C. Illumination discontinuity: Shadows, lighting changes

• D. Reflectance discontinuity: Surface properties, markings


! Sharply different Gray levels on both sides

A

C

B

D
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REALITY
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More Reality

Very noisy signals

! Prior knowledge is required!!
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Optional: Illusory Contours 

• No closed contour, but we still perceived an edge. 

•  This will not be further discussed in this class. 
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Ideal Step Edge

Rapid change in image => High local gradient

f(x) = step edge

1st Derivative f’(x)

2nd Derivative f’’(x)

maximum

zero crossing
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Edge Properties

Original
Orientation

Magnitude

Contrast
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Edge Descriptors

• Edge Normal:

• Unit vector in the direction of maximum intensity change


• Edge Direction:

• Unit vector perpendicular to the edge normal


• Edge position or center

• Image location at which edge is located


• Edge Strength

• Speed of intensity variation across the edge.
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Images as 3-D Surfaces 
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Geometric Interpretation

Since I(x,y) is not a continuous function:

1.Locally fit a smooth surface.

2.Compute its derivatives.
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Image Gradient 

€ 

The gradient of an image

                ∇I =
δI
δx

,δI
δy

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

points in the direction of most rapid change in
intensity.

€ 
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Magnitude And Orientation 
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Gradient Images

∂I
∂x

∂I
∂y

I

∂I
∂x

2
+

∂I
∂y

2

The gradient magnitude is unaffected by orientation ….
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Real Images

… but not directly usable in most real-world images.
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Edge Operators 

• Difference Operators

• Convolution Operators

• Trained Detectors

• Deep Nets
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Gradient Methods

F(x)

x

F’(x)

x

Edge = Sharp variation

Large first derivative



38

1D Finite Differences

In one dimension:

22

2 )()(2)(
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Coding 1D Finite Differences 

Line stored as an array:


• for i in range(n-1):

    q[i]=(p[i+1]-p[i])


•  for i in range(1,n-1):

    q[i]=(p[i+1]-p[i-1])/2


• q=(p[2:]-p[:-2])/2  


p
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2D Finite Differences
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Coding 2D Finite Differences 

Python


Image stored as a 2D array:


• dx = p[1:,:]-p[:-1,:]

• dy = p[:,1:]-p[:,:-1]


• dx = (p[2:,:]-p[:-2,:])/2

• dy = (p[:,2:]-p[:,:-2])/2


p

C


Image stored in raster format:

{

  int i;

  for(i=0;i<xdim;i++){

    dx[i] = p[i+1]     -p[i];

    dy[i] = p[i+xdim]-p[i];

  }

}

• Only 1D array accesses

• No multiplications

—> Can be exploited to increase speed. 
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Noise in 1D

Consider a single row or column of the image:
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Fourier Interpretation

! Differentiating emphasizes high frequencies 
and therefore noise!

Function Fourier Transform

df
dx (x) uF (u)

�f
�x (x, y) uF (u, v)
�f
�y (x, y) vF (u, v)
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f(x) = x2 sin(1/x)

f

df
dx

F

uF

Original function

+


Noise

Fourier transform
Original function
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Noise in 2D
Ideal step edge Step edge + noise

Increasing noise level

As the amount of noise increases, the derivatives stop being 
meaningful. 
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Removing Noise

Problem: 

• High frequencies and differentiation do not 

mix well.


Solution: 

• Suppress high frequencies by


• using the Discrete Fourier Transform.
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Discrete Fourier Transform

The DFT is the discrete equivalent of the 2D Fourier transform:

• The 2D function f is written as a sum of sinusoids. 

• The DFT of f convolved with g is the product of their DFTs. 


 

F(μ, ν) =
1

M * N

M−1

∑
x=0

N−1

∑
y=0

f(x, y)e−2iπ(μx/M+νy/N)

f(x, y) =
1

M * N

M−1

∑
μ=0

N−1

∑
ν=0

F(μ, ν)e+2iπ(μx/M+νy/N)
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Fourier Basis Element

Real part of 




where

•  represents the frequency,

•  represents the orientation.

e+2iπ(ux+vy)

u2 + v2

atan(v, u)
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Fourier Basis Element

Real part of 




where

•  is larger than before.

e+2iπ(ux+vy)

u2 + v2
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Fourier Basis Element

Real part of 




where

•  is larger still.

e+2iπ(ux+vy)

u2 + v2
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Truncated Inverse DFT

F(μ, ν) =
1

M * N

M−1

∑
x=0

N−1

∑
y=0

f(x, y)e−2iπ(μx/M+νy/N)

f(x, y) =
1

M * N

M−1

∑
μ=0

N−1

∑
ν=0

F(μ, ν)e+2iπ(μx/M+νy/N)

f(x, y) =
1

M * N ∑
μ2+ν2<T

F(μ, ν)e+2iπ(μx/M+νy/N)

• The sinusoids corresponding to  depict high frequencies.

• Removing them amounts to removing high-frequencies. 

μ2 + ν2 ≥ T

T is a hand-specified threshold. 
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Smoothing by Truncating the IDFT

Rotated stripes:

• Dominant diagonal structures

• Discretization produces additional harmonics

—> Removing higher frequencies and reconstructing 
yields a smoothed image.
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Removing Noise

Problem: 

• High frequencies and differentiation do not mix well.


Solution: 

• Suppress high frequencies by


• using the Discrete Fourier Transform,

• convolving with a low-pass filter.
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1D Convolution

g ⇤ f(t) =
Z

⌧
g(t� ⌧)f(⌧)d⌧

g ⇤ f(m) =
X

n

g(m� n)f(n)
<latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc="></latexit><latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc="></latexit><latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc=">AAACWnicbVFNS+wwFE2rz4/6PsaPnZvg8B6joLRudCOIblwqOCpMh5KmtzWYpH3JrTCU+ZNuRPCvCKYzI/h1IbmHc88hyUlaSWExDJ88f27+x8Li0nKw8vPX7z+d1bUrW9aGQ5+XsjQ3KbMghYY+CpRwUxlgKpVwnd6dtvPrezBWlPoSRxUMFSu0yAVn6Kik8z+IUyiEbpgUhd4ZBwXdoTnt4Tb9d0RjoTFpYmT1mBY93G3RNs170561jcbxm0dNPbZWiXZytatbrduCGHT2dkLS6YZ74aToVxDNQJfM6jzpPMRZyWsFGrlk1g6isMJhwwwKLmEcxLWFivE7VsDAQc0U2GEziWZM/zomo3lp3NJIJ+x7R8OUtSOVOqVieGs/z1ryu9mgxvxw2Ahd1QiaTw/Ka0mxpG3ONBMGOMqRA4wb4e5K+S0zjKP7jcCFEH1+8ldwtb8XOXyx3z0+mcWxRDbJFumRiByQY3JGzkmfcPJIXrwFb9F79n1/2V+ZSn1v5lknH8rfeAX4Jq4L</latexit><latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc="></latexit>
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Smooth Before Differentiating

€ 

f

g

g* f

∂
∂x
(g* f )
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Simultaneously Smooth and Differentiate

--> Faster because dg/dx can be precomputed.

€ 

f

∂g
∂x

∂
∂x
(g* f ) =

∂g
∂x
* f
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Discrete 1D Convolution

Input

W


Mask

w

1 4 -1 0 2 -2 1 3 3 1

1 2 0 -1

F. Fleuret. EE-559 – Deep learning



58

Discrete 1D Convolution

W − w +  1

w

1 2 0 -1

Output


9

W

1 4 -1 0 2 -2 1 3 3 1

Input

F. Fleuret. EE-559 – Deep learning
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0

W

1 4 -1 0 2 -2 1 3 3 1

Input

F. Fleuret. EE-559 – Deep learning
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0 1

W

1 4 -1 0 2 -2 1 3 3 1

Input

F. Fleuret. EE-559 – Deep learning
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0 1 3

W

1 4 -1 0 2 -2 1 3 3 1

Input

F. Fleuret. EE-559 – Deep learning
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0 1 3 -5

W

1 4 -1 0 2 -2 1 3 3 1

Input

F. Fleuret. EE-559 – Deep learning
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0 1 3 -5 -3

W

5 /  14

1 4 -1 0 2 -2 1 3 3 1

Input

F. Fleuret. EE-559 – Deep learning
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0 1 3 -5 -3 6

W

1 4 -1 0 2 -2 1 3 3 1

Input

F. Fleuret. EE-559 – Deep learning
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Discrete 1D Convolution

W − w +  1

9 0 1 3 -5 -3 6

W


Mask

w


Output

1 4 -1 0 2 -2 1 3 3 1

1 2 0 -1

Input

f

m

m*f

m * f(x) =
w

∑
i=0

m(i)f(x − i)
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Discrete 2D Convolution

Convolution mask m, also known as a kernel.

m * *f(x, y) =
w

∑
i=0

w

∑
j=0

m(i, j)f(x − i, y − j)

Input image: f
Convolved image: m**f

[
m11 … m1w… … …
mw1 … mww]
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Differentiation As Convolution

! Use wider masks to add some smoothing

[ ]

[ ]
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Smoothing and Differentiating

Compute the difference of averages on either 
side of the central pixel.
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3X3 Masks
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Prewitt operator Sobel operator

x derivative y derivative
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Prewitt Example

Santa Fe Mission Gradient Image
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Sobel Example
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Gaussian Smoothing

• More principled way to eliminate high frequency 
noise.


• Is fast because the kernel is 

• small, 

• separable.
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Gaussian Functions 

)2/)(exp(
2
1

),( 222
22 σ

πσ
yxyxg +−=

1=σ 2=σ

• The integral is always 1.0

• The larger , the broader the Gaussian is.

• As  approaches 0, the Gaussian approximates a Dirac function.  

σ
σ
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DFT of a Gaussian

• The DFT of  a Gaussian is  
a Gaussian.


• It has finite support. 

• Its width is inversely 

proportional to that of the 
original Gaussian. 
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Gaussians as Low-Pass Filters

• The Fourier transform of a convolution is the product of their Fourier 
transforms: .


• If g is a Gaussian, so is .

• Furthermore if g is broad, the support of  is small.

• So is the support of .

• There are no more high-frequencies in .


—> Convolving with a Gaussian suppresses the high frequencies.  

ℱ(g * f ) = ℱ(g)ℱ( f )
ℱ(g)

ℱ(g)
ℱ(g * f )

g * f
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Gaussian Smoothed Images

Original image Blurred image

 =1σ

 =2σ

 =4σ

Blur  =1σ

Blur  =2σ Blur  =4σ
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Scale Space 

Increasing scale (σ) removes high frequencies (details) but never 
adds artifacts.



78

Separability

)()(),(

)/exp(
1
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112

22
1
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xxg

=
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11

112

—> 2D convolutions are never required.  Smoothing can be 
achieved by successive 1D convolutions, which is faster. 
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Continuous Gaussian Derivatives 

• Image derivatives computed by convolving 
with the derivative of a Gaussian:

∫ ∫∫ ∫

∫ ∫ ∫ ∫

−−=−−
∂

∂

−−=−−
∂

∂

v u

u v u v

dvduvyuxfugvgdudvvyuxfvug
y

dudvvyuxfvgugdudvvyuxfvug
x

)),()()((),(),(

)),()()((),(),(

1
'
12

1
'
12

= x



Sigma=1:


g : 0.000070 0.010332 0.207532 0.564131 0.207532 0.010332 0.000070


g’: 0.000418 0.041330 0.415065 0.000000 -0.415065 -0.041330 -0.000418 


Sigma=2:


g : 0.005167 0.029735 0.103784 0.219712 0.282115 0.219712 0.103784 0.029735 0.005167 


g’: 0.010334 0.044602 0.103784 0.109856 0.000000 -0.109856 -0.103784 -0.044602 -0.010334
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Discrete Gaussian Derivatives 

*

g
*

g’

—> Only requires 1D convolutions with relatively small masks. 
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Increasing Sigma

No Noise

Noise Added

Input Images

No Noise Noise Added

=1σ

=2σ

=4σ

Gradient Images

—> Larger sigma values improve 
robustness but degrade precision. 
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Derivative Images

∂I
∂x

∂I
∂y

I

∂I
∂x

2
+

∂I
∂y

2



83

Derivative Images

∂I
∂x

∂I
∂y

∂I
∂x

2
+

∂I
∂y

2
I
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Gradient-Based Tracking

• Maximize edge-strength along projection of the 3—D 
wireframe.
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Gradient Maximization
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Real-Time Tracking
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Canny Edge Detector 

I
∂I
∂x

2
+

∂I
∂y

2
Thinned gradient image
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Canny Edge Detector 

Convolution

•  Gradient strength

•  Gradient direction

Non Maxima Suppression
Hysteresis Thresholding

Thresholding
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Non-Maxima Suppression

Check if pixel is local maximum along gradient direction, 
which requires checking interpolated pixels p and r.
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Hysteresis Thresholding

• Algorithm takes two thresholds: high & low

• A pixel with edge strength above high threshold is an edge.

• Any pixel with edge strength below low threshold is not. 

• Any pixel above the low threshold and next to an edge is 

an edge.


• Iteratively label edges 

• Edges grow out from ‘strong edges’

• Iterate until no change in image.
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Canny Results

σ=1, T2=255, T1=1 

‘Y’ or ‘T’ junction 
problem with 
Canny operator
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Canny Results

σ=1, T2=255, T1=220 σ=1, T2=128, T1=1 σ=2, T2=128, T1=1 

 Heath et al., PAMI’97
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Scale Space Revisited 

Increasing scale (σ) removes details but never adds new ones:

• Edge position may shift.

• Two edges may merge.

• An edge may not split into two.
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Multiple Scales 

!Choosing the right scale is a difficult semantic 
problem. 

1=σ 2=σ 4=σ
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Scale vs Threshold

Fine scale

High threshold

Coarse scale

High threshold

Coarse scale

Low threshold
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Industrial Application

Lim et al. , Advanced Robotics 2019.

In industrial environments where the Canny parameters can be properly 
adjusted: 

• It is fast.

• Does not require training data. 
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Visual Servoing

Drummond and Cipolla, PAMI’02

—> A useful tool in our toolbox. 
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Tracking a Rocket

 Given an initial pose estimate:


• Find the occluding contours.

• Find closest edge points in the normal direction. 

• Re-estimate pose to minimize sum of square distances. 

• Iterate until convergence. 

Occluding contour

Image gradient
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Visual Servoing
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Space Cleaning

https://clearspace.today/

Capturing and deorbiting 

a dead satellite. 

• A more sophisticated version of this old algorithm will 
blast off in 2025!


• ESA does not yet trust neural nets for such a mission. 



101

Limitations of the Canny Algorithm

There is no ideal value of !σ
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Steep Smooth Shading

! Shading can produce spurious edges.

• Rapidly varying gray levels.

• Large gradients.
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Texture Boundaries

• Not all image contours are characterized by   
strong contrast.

• Sometimes, textural changes are just as 
significant.   
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Different Boundary Types

Intensity

Texture

Brightness

Color

Non-boundaries Boundaries

Martin et al. , PAMI’04
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Training Database

1000 images with 5 to 10 segmentations each.
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Machine Learning

Learn the probability of being a boundary 
pixel on the basis of a set of features.

Image Optimized Cues Boundary Strength

Brightness

Color

Texture

Benchmark

Human Segmentations

Cue Combination

Model



107

Canny 2MM BG+CG+TG HumanImage

Comparative Results

Martin et al. , PAMI’04
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Classification vs Regression

Sironi, et al. PAMI’15

Yes!
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Deep Learning

Xie and Tu, ICCV’15
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Deep Learning Vs Canny
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Deeper Learning

Liu et al. , CVPR’17
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Convolutional Neural Network

▪ Succession of convolutional and pooling layers. 

▪ Fully connected layers at the end.

—> Will be discussed in more detail in the next lecture. 
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A Partial Explanation? 

First and second layer features of a Convolutional Neural Net:

▪ They can be understood as performing multiscale filtering. 

▪ The weights and thresholds are chosen by the optimization 

procedure. 
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50 Years Of Edge Detection

• Convolution operators respond 
to steep smooth shading.


• Parametric matchers tend to 
reject non ideal edges.


• Arbitrary thresholds and scale 
sizes are required.


• Learning-based methods need 
exhaustive databases. 


• There still is work to go from 
contours to objects.

Sironi et al. PAMI’15  —> Liu et al. , CVPR’17Canny, PAMI’86 —> Sironi et al. PAMI’15

Let us talk about deep networks. 


